Cargando…

Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes

Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in in situ and at the single-cell level. Here we demonstrate a combined approach of random forest (...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanno, Nanako, Kato, Shingo, Ohkuma, Moriya, Matsui, Motomu, Iwasaki, Wataru, Shigeto, Shinsuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397914/
https://www.ncbi.nlm.nih.gov/pubmed/34485857
http://dx.doi.org/10.1016/j.isci.2021.102975
_version_ 1783744714174889984
author Kanno, Nanako
Kato, Shingo
Ohkuma, Moriya
Matsui, Motomu
Iwasaki, Wataru
Shigeto, Shinsuke
author_facet Kanno, Nanako
Kato, Shingo
Ohkuma, Moriya
Matsui, Motomu
Iwasaki, Wataru
Shigeto, Shinsuke
author_sort Kanno, Nanako
collection PubMed
description Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in in situ and at the single-cell level. Here we demonstrate a combined approach of random forest (RF) machine learning and single-cell Raman microspectroscopy for accurate classification of phylogenetically diverse prokaryotes (three bacterial and three archaeal species from different phyla). Our RF classifier achieved a 98.8 ± 1.9% classification accuracy among the six species in pure populations and 98.4% for three species in an artificially mixed population. Feature importance scores against each wavenumber reveal that the presence of carotenoids and structure of membrane lipids play key roles in distinguishing the prokaryotic species. We also find unique Raman markers for an ammonia-oxidizing archaeon. Our approach with moderate data pretreatment and intuitive visualization of feature importance is easy to use for non-spectroscopists, and thus offers microbiologists a new single-cell tool for shedding light on microbial dark matter.
format Online
Article
Text
id pubmed-8397914
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83979142021-09-02 Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes Kanno, Nanako Kato, Shingo Ohkuma, Moriya Matsui, Motomu Iwasaki, Wataru Shigeto, Shinsuke iScience Article Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in in situ and at the single-cell level. Here we demonstrate a combined approach of random forest (RF) machine learning and single-cell Raman microspectroscopy for accurate classification of phylogenetically diverse prokaryotes (three bacterial and three archaeal species from different phyla). Our RF classifier achieved a 98.8 ± 1.9% classification accuracy among the six species in pure populations and 98.4% for three species in an artificially mixed population. Feature importance scores against each wavenumber reveal that the presence of carotenoids and structure of membrane lipids play key roles in distinguishing the prokaryotic species. We also find unique Raman markers for an ammonia-oxidizing archaeon. Our approach with moderate data pretreatment and intuitive visualization of feature importance is easy to use for non-spectroscopists, and thus offers microbiologists a new single-cell tool for shedding light on microbial dark matter. Elsevier 2021-08-11 /pmc/articles/PMC8397914/ /pubmed/34485857 http://dx.doi.org/10.1016/j.isci.2021.102975 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Kanno, Nanako
Kato, Shingo
Ohkuma, Moriya
Matsui, Motomu
Iwasaki, Wataru
Shigeto, Shinsuke
Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
title Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
title_full Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
title_fullStr Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
title_full_unstemmed Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
title_short Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
title_sort machine learning-assisted single-cell raman fingerprinting for in situ and nondestructive classification of prokaryotes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397914/
https://www.ncbi.nlm.nih.gov/pubmed/34485857
http://dx.doi.org/10.1016/j.isci.2021.102975
work_keys_str_mv AT kannonanako machinelearningassistedsinglecellramanfingerprintingforinsituandnondestructiveclassificationofprokaryotes
AT katoshingo machinelearningassistedsinglecellramanfingerprintingforinsituandnondestructiveclassificationofprokaryotes
AT ohkumamoriya machinelearningassistedsinglecellramanfingerprintingforinsituandnondestructiveclassificationofprokaryotes
AT matsuimotomu machinelearningassistedsinglecellramanfingerprintingforinsituandnondestructiveclassificationofprokaryotes
AT iwasakiwataru machinelearningassistedsinglecellramanfingerprintingforinsituandnondestructiveclassificationofprokaryotes
AT shigetoshinsuke machinelearningassistedsinglecellramanfingerprintingforinsituandnondestructiveclassificationofprokaryotes