Cargando…
Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes
Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in in situ and at the single-cell level. Here we demonstrate a combined approach of random forest (...
Autores principales: | Kanno, Nanako, Kato, Shingo, Ohkuma, Moriya, Matsui, Motomu, Iwasaki, Wataru, Shigeto, Shinsuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397914/ https://www.ncbi.nlm.nih.gov/pubmed/34485857 http://dx.doi.org/10.1016/j.isci.2021.102975 |
Ejemplares similares
-
Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
por: Kanno, Nanako, et al.
Publicado: (2022) -
Nondestructive detection of lead chrome green in tea by Raman spectroscopy
por: Li, Xiao-Li, et al.
Publicado: (2015) -
A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH
por: Kato, Shingo, et al.
Publicado: (2021) -
Raman Microspectroscopy and Imaging of Filamentous Fungi
por: Shigeto, Shinsuke, et al.
Publicado: (2022) -
Complete Genome Sequence of Athalassotoga saccharophila Strain NAS-01, a Deep-Branching Thermophilic Lineage in the Phylum Thermotogae
por: Kato, Shingo, et al.
Publicado: (2020)