Cargando…

Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery

Background: Mesenchymal stromal cells (MSCs) are the most prominent cell type used in clinical regenerative medicine and stem cell research. MSCs are commonly harvested from bone marrow that has been aspirated from patients’ iliac crest. However, the ethical challenges of finding consenting patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jimmy J. H., Bozso, Sabin J., EL-Andari, Ryaan, Moon, Michael C., Freed, Darren H., Nagendran, Jayan, Nagendran, Jeevan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397946/
https://www.ncbi.nlm.nih.gov/pubmed/34442518
http://dx.doi.org/10.3390/mi12080897
Descripción
Sumario:Background: Mesenchymal stromal cells (MSCs) are the most prominent cell type used in clinical regenerative medicine and stem cell research. MSCs are commonly harvested from bone marrow that has been aspirated from patients’ iliac crest. However, the ethical challenges of finding consenting patients and obtaining fresh autologous cells via invasive extraction methods remain to be barriers to MSC research. Methods: Techniques of harvesting sternal bone marrow, isolating and culturing MSCs, MSC surface phenotyping, and MSC differentiation are described. Samples from 50 patients undergoing a sternotomy were collected, and the time taken to reach 80% confluency and cell count at the second splitting of MSC were measured. Results: MSC isolated from the sternal bone marrow of patients undergoing cardiac surgery demonstrated successful MSC surface phenotyping and MSC differentiation. The mean cell count at the time of the second split was 1,628,025, and the mean time taken to reach the second split was 24.8 days. Conclusion: Herein, we describe the first reported technique of harvesting sternal bone marrow from patients already undergoing open-chest cardiac surgery to reduce the invasiveness of bone marrow harvesting, as well as the methods of isolating, culturing, and identifying MSCs for the clinical application of constructing autologous MSC-derived biomaterials.