Cargando…
Orphan Nuclear Receptor RORγ Modulates the Genome-Wide Binding of the Cholesterol Metabolic Genes during Mycotoxin-Induced Liver Injury
Maintaining lipid homeostasis is crucial to liver function, the key organ that governs the whole-body energy metabolism. In contrast, lipid dysregulation has been implicated in mycotoxin-induced liver injury, by which the pathophysiological regulation and the molecular components involved remain elu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397974/ https://www.ncbi.nlm.nih.gov/pubmed/34444698 http://dx.doi.org/10.3390/nu13082539 |
Sumario: | Maintaining lipid homeostasis is crucial to liver function, the key organ that governs the whole-body energy metabolism. In contrast, lipid dysregulation has been implicated in mycotoxin-induced liver injury, by which the pathophysiological regulation and the molecular components involved remain elusive. Here we focused on the potential roles of orphan nuclear receptor (NR) RORγ in lipid programming, and aimed to explore its action on cholesterol regulation in the liver of mycotoxin-exposed piglets. We found that liver tissues were damaged in the mycotoxin-exposed piglets compared to the healthy controls, revealed by histological analysis, elevated seral ALT, AST and ALP levels, and increased caspase 3/7 activities. Consistent with the transcriptomic finding of down-regulated cholesterol metabolism, we demonstrated that both cholesterol contents and cholesterol biosynthesis/transformation gene expressions in the mycotoxin-exposed livers were reduced, including HMGCS1, FDPS, SQLE, EBP, FDFT1 and VLDLR. Furthermore, we reported that RORγ binds to the cholesterol metabolic genes in porcine hepatocytes using a genome-wide ChIP-seq analysis, whereas mycotoxin decreased the RORγ binding occupancies genome-wide, especially at the cholesterol metabolic pathway. In addition, we revealed the enrichment of co-factors p300 and SRC, the histone marks H3K27ac and H3K4me2, together with RNA Polymerase II (Pol-II) at the locus of HMGCS1 in hepatocytes, which were reduced by mycotoxin-exposure. Our results provide a deep insight into the cholesterol metabolism regulation during mycotoxin-induced liver injury, and propose NRs as therapeutic targets for anti-mycotoxin treatments. |
---|