Cargando…
Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium
Under climate fluctuation, species dispersal may be disturbed by terrain and local climate, resulting in uneven spatial-genetic structure. In addition, organisms at different latitudes may be differentially susceptible to climate change. Here, we tracked the seed dispersal of Acer caudatifolium usin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398000/ https://www.ncbi.nlm.nih.gov/pubmed/34451691 http://dx.doi.org/10.3390/plants10081646 |
_version_ | 1783744733821009920 |
---|---|
author | Luo, Min-Xin Lu, Hsin-Pei Chai, Min-Wei Chang, Jui-Tse Liao, Pei-Chun |
author_facet | Luo, Min-Xin Lu, Hsin-Pei Chai, Min-Wei Chang, Jui-Tse Liao, Pei-Chun |
author_sort | Luo, Min-Xin |
collection | PubMed |
description | Under climate fluctuation, species dispersal may be disturbed by terrain and local climate, resulting in uneven spatial-genetic structure. In addition, organisms at different latitudes may be differentially susceptible to climate change. Here, we tracked the seed dispersal of Acer caudatifolium using chloroplast DNA to explore the relationships of terrain and local climate heterogeneity with range shifts and demography in Taiwan. Our results showed that the extant populations have shifted upward and northward to the mountains since the Last Glacial Maximum. The distributional upshift of A. caudatifolium is in contrast to the downward expansion of its closest relative in Taiwan, A. morrisonense. The northern populations of A. caudatifolium have acquired multiple-source chlorotypes and harbor high genetic diversity. However, effective gene flow between the north and south is interrupted by topography, geographic distance, north-south differences in October rainfall, and other climate heterogeneities, blocking southward genetic rescue. In addition, winter monsoon-driven rainfall may cause regional differences in the phenological schedule, resulting in adaptive effects on the timing of range shift and the genetic draft of chlorotype distribution. Terrain, distance, and local climate also differentiate the northernmost populations from the others, supporting the previous taxonomic treatment of Acer kawakamii var. taitonmontanum as an independent variety. |
format | Online Article Text |
id | pubmed-8398000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83980002021-08-29 Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium Luo, Min-Xin Lu, Hsin-Pei Chai, Min-Wei Chang, Jui-Tse Liao, Pei-Chun Plants (Basel) Article Under climate fluctuation, species dispersal may be disturbed by terrain and local climate, resulting in uneven spatial-genetic structure. In addition, organisms at different latitudes may be differentially susceptible to climate change. Here, we tracked the seed dispersal of Acer caudatifolium using chloroplast DNA to explore the relationships of terrain and local climate heterogeneity with range shifts and demography in Taiwan. Our results showed that the extant populations have shifted upward and northward to the mountains since the Last Glacial Maximum. The distributional upshift of A. caudatifolium is in contrast to the downward expansion of its closest relative in Taiwan, A. morrisonense. The northern populations of A. caudatifolium have acquired multiple-source chlorotypes and harbor high genetic diversity. However, effective gene flow between the north and south is interrupted by topography, geographic distance, north-south differences in October rainfall, and other climate heterogeneities, blocking southward genetic rescue. In addition, winter monsoon-driven rainfall may cause regional differences in the phenological schedule, resulting in adaptive effects on the timing of range shift and the genetic draft of chlorotype distribution. Terrain, distance, and local climate also differentiate the northernmost populations from the others, supporting the previous taxonomic treatment of Acer kawakamii var. taitonmontanum as an independent variety. MDPI 2021-08-10 /pmc/articles/PMC8398000/ /pubmed/34451691 http://dx.doi.org/10.3390/plants10081646 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luo, Min-Xin Lu, Hsin-Pei Chai, Min-Wei Chang, Jui-Tse Liao, Pei-Chun Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium |
title | Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium |
title_full | Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium |
title_fullStr | Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium |
title_full_unstemmed | Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium |
title_short | Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium |
title_sort | environmental heterogeneity leads to spatial differences in genetic diversity and demographic structure of acer caudatifolium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398000/ https://www.ncbi.nlm.nih.gov/pubmed/34451691 http://dx.doi.org/10.3390/plants10081646 |
work_keys_str_mv | AT luominxin environmentalheterogeneityleadstospatialdifferencesingeneticdiversityanddemographicstructureofacercaudatifolium AT luhsinpei environmentalheterogeneityleadstospatialdifferencesingeneticdiversityanddemographicstructureofacercaudatifolium AT chaiminwei environmentalheterogeneityleadstospatialdifferencesingeneticdiversityanddemographicstructureofacercaudatifolium AT changjuitse environmentalheterogeneityleadstospatialdifferencesingeneticdiversityanddemographicstructureofacercaudatifolium AT liaopeichun environmentalheterogeneityleadstospatialdifferencesingeneticdiversityanddemographicstructureofacercaudatifolium |