Cargando…

In Situ Formation of Laser-Cladded Layer on Thin-Walled Tube of Aluminum Alloy in Underwater Environment

The first study of thin-walled aluminum-alloy tubes with underwater-laser-nozzle in situ melting technology was carried out. The study mainly covered the influence of the water environment on the laser melting process, melting appearance, geometric characteristics, microstructure, regional segregati...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Cheng, Guo, Ning, Cheng, Qi, Fu, Yunlong, Zhang, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398014/
https://www.ncbi.nlm.nih.gov/pubmed/34443251
http://dx.doi.org/10.3390/ma14164729
Descripción
Sumario:The first study of thin-walled aluminum-alloy tubes with underwater-laser-nozzle in situ melting technology was carried out. The study mainly covered the influence of the water environment on the laser melting process, melting appearance, geometric characteristics, microstructure, regional segregation and microhardness. During the transfer of the cladding environment from air to water, the uniformity of the cladding layer became poor, but excellent metallurgical bonding was still obtained. The dilution rate (D) decreased from 0.46 to 0.33, while the shape factor (S) increased from 4.38 to 5.98. For the in-air and underwater samples, the microstructure of the melting zone (MZ) and the cladding zone (CZ) were columnar dendrites and equiaxed grains, respectively. In addition, the microstructure of the overlapping zone (OZ) was composed of columnar dendrites and equiaxed grains. The underwater average grain size was smaller than that of in-air. In addition, the water environment was beneficial for reducing the positive segregation in the columnar dendrite region. Compared with the in-air cladding sample, the precipitated phases in the OZ of the underwater cladding sample reduced. Under the combined action of grain refinement and precipitated phase reduction, the microhardness value of the underwater OZ was higher than that of the in-air OZ.