Cargando…

Application of Epigallocatechin-3-gallate (EGCG) Modified 1-Ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride/N-hydroxy-succinimide (EDC/NHS) Cross-Linked Collagen Membrane to Promote Macrophage Adhesion

The chemically cross-linking 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride/N-hydroxy-succinimide (EDC/NHS) collagen membrane endows such natural polymers with promising mechanical properties. Nevertheless, it is inadequate to advance the modulation of foreign body response (FBR) after i...

Descripción completa

Detalles Bibliográficos
Autores principales: Rung, Shengan, Zhao, Xiwen, Chu, Chenyu, Yang, Renli, Qu, Yili, Man, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398046/
https://www.ncbi.nlm.nih.gov/pubmed/34443183
http://dx.doi.org/10.3390/ma14164660
Descripción
Sumario:The chemically cross-linking 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride/N-hydroxy-succinimide (EDC/NHS) collagen membrane endows such natural polymers with promising mechanical properties. Nevertheless, it is inadequate to advance the modulation of foreign body response (FBR) after implantation or guidance of tissue regeneration. In previous research, macrophages have a strong regulatory effect on regeneration, and such enhanced membranes underwent the modification with Epigallocatechin-3-gallate (EGCG) could adjust the recruitment and phenotypes of macrophages. Accordingly, we develop EGCG-EDC/NHS membranes, prepared with physical immersion, while focusing on the surface morphology through SEM, the biological activity of collagen was determined by FTIR, the activity and adhesion of cell culture in vitro, angiogenesis and monocyte/macrophage recruitment after subcutaneous implantation in vivo, are characterized. It could be concluded that it is hopeful EGCG-EDC/NHS collagen membrane can be used in implant dentistry for it not only retains the advantages of the collagen membrane itself, but also improves cell viability, adhesion, vascularization, and immunoregulation tendency.