Cargando…
Using Domain Knowledge and Data-Driven Insights for Patient Similarity Analytics
Patient similarity analytics has emerged as an essential tool to identify cohorts of patients who have similar clinical characteristics to some specific patient of interest. In this study, we propose a patient similarity measure called D3K that incorporates domain knowledge and data-driven insights....
Autores principales: | Oei, Ronald Wihal, Fang, Hao Sen Andrew, Tan, Wei-Ying, Hsu, Wynne, Lee, Mong-Li, Tan, Ngiap-Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398126/ https://www.ncbi.nlm.nih.gov/pubmed/34442343 http://dx.doi.org/10.3390/jpm11080699 |
Ejemplares similares
-
Patient similarity analytics for explainable clinical risk prediction
por: Fang, Hao Sen Andrew, et al.
Publicado: (2021) -
Using similar patients to predict complication in patients with diabetes, hypertension, and lipid disorder: a domain knowledge-infused convolutional neural network approach
por: Oei, Ronald Wihal, et al.
Publicado: (2022) -
Diabetes medication recommendation system using patient similarity analytics
por: Tan, Wei Ying, et al.
Publicado: (2022) -
The effect of oral diabetes medications on glycated haemoglobin (HbA1c) in Asians in primary care: a retrospective cohort real-world data study
por: Fang, Hao Sen Andrew, et al.
Publicado: (2022) -
LDL-cholesterol change and goal attainment following statin intensity titration among Asians in primary care: a retrospective cohort study
por: Fang, Hao Sen Andrew, et al.
Publicado: (2021)