Cargando…

The Impact of Lifestyle, Diet and Physical Activity on Epigenetic Changes in the Offspring—A Systematic Review

Aims: This systematic review examines the association between maternal lifestyle, diet and physical activity, and epigenetic changes in the offspring. Methods: A literature search was conducted using multiple science databases: PubMed, Embase and Cochrane Library, on 10 March 2021. RCT and Cohort st...

Descripción completa

Detalles Bibliográficos
Autores principales: Rasmussen, Louise, Knorr, Sine, Antoniussen, Christian Skødt, Bruun, Jens Meldgaard, Ovesen, Per Glud, Fuglsang, Jens, Kampmann, Ulla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398155/
https://www.ncbi.nlm.nih.gov/pubmed/34444981
http://dx.doi.org/10.3390/nu13082821
Descripción
Sumario:Aims: This systematic review examines the association between maternal lifestyle, diet and physical activity, and epigenetic changes in the offspring. Methods: A literature search was conducted using multiple science databases: PubMed, Embase and Cochrane Library, on 10 March 2021. RCT and Cohort studies in English or Scandinavian languages were included. Exposure variables included diet, lifestyle, meal patterns or physical activity. Studies using dietary supplements as exposure variables were excluded. Outcome variables included were DNA methylation, microRNA or histone changes in placenta, cord blood or offspring. Two independent authors screened, read and extracted data from the included papers. The Cochrane risk-of-bias tool for randomized trials (RoB2) and The Critical Appraisal Skills Program (CASP) Cohort Study Checklist were used to assess risk of bias in the included studies. A qualitative approach was employed due to heterogeneity of exposures and results of the studies. Results: 16 studies and 3617 participants were included in the final analysis. The exposure variables included physical activity, carbohydrate, low glycemic index diet, added sugar, fat, Mediterranean diet and pro-inflammatory diet. The outcome variables identified were differences in DNA methylation and microRNA. Most studies described epigenetic changes in either placenta or cord blood. Genes reported to be methylated were GR, HSD2, IGF-2, PLAG1, MEG-3, H19 and RXRA. However, not all studies found epigenetic changes strong enough to pass multiple testing, and the study quality varied. Conclusion: Despite the variable quality of the included studies, the results in this review suggest that there may be an association between the mother’s lifestyle, diet and level of physical activity during pregnancy and epigenetic changes in the offspring.