Cargando…
Cascaded Deep Learning Neural Network for Automated Liver Steatosis Diagnosis Using Ultrasound Images
Diagnosing liver steatosis is an essential precaution for detecting hepatocirrhosis and liver cancer in the early stages. However, automatic diagnosis of liver steatosis from ultrasound (US) images remains challenging due to poor visual quality from various origins, such as speckle noise and blurrin...
Autores principales: | Rhyou, Se-Yeol, Yoo, Jae-Chern |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398227/ https://www.ncbi.nlm.nih.gov/pubmed/34450746 http://dx.doi.org/10.3390/s21165304 |
Ejemplares similares
-
Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images
por: Byra, Michał, et al.
Publicado: (2018) -
Ultrasound-based techniques for the diagnosis of liver steatosis
por: Ferraioli, Giovanna, et al.
Publicado: (2019) -
Deep Neural Architectures for Contrast Enhanced Ultrasound (CEUS) Focal Liver Lesions Automated Diagnosis †
por: Căleanu, Cătălin Daniel, et al.
Publicado: (2021) -
Accurate and generalizable quantitative scoring of liver steatosis from ultrasound images via scalable deep learning
por: Li, Bowen, et al.
Publicado: (2022) -
Automated assessment of steatosis in murine fatty liver
por: Sethunath, Deepak, et al.
Publicado: (2018)