Cargando…
Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching
A quartz crystal resonator (QCR) is an indispensable electronic component in the field of the modern electronics industry. By designing and depositing electrodes of different shapes and thicknesses on a quartz wafer with a certain fundamental frequency, the desired target frequency can be obtained....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398294/ https://www.ncbi.nlm.nih.gov/pubmed/34442516 http://dx.doi.org/10.3390/mi12080894 |
_version_ | 1783744804972134400 |
---|---|
author | Zhang, Jun-Lin Liao, Shuang Chen, Cheng Yang, Xiu-Tao Lin, Sheng-Ao Tan, Feng Li, Bing Wang, Wen-Wu Zhong, Zheng-Xiang Zeng, Guang-Gen |
author_facet | Zhang, Jun-Lin Liao, Shuang Chen, Cheng Yang, Xiu-Tao Lin, Sheng-Ao Tan, Feng Li, Bing Wang, Wen-Wu Zhong, Zheng-Xiang Zeng, Guang-Gen |
author_sort | Zhang, Jun-Lin |
collection | PubMed |
description | A quartz crystal resonator (QCR) is an indispensable electronic component in the field of the modern electronics industry. By designing and depositing electrodes of different shapes and thicknesses on a quartz wafer with a certain fundamental frequency, the desired target frequency can be obtained. Affected by factors such as the deposition equipment, mask, wafer size and placement position, it is difficult to accurately obtain the target frequency at a given time, especially for mass-produced QCRs. In this work, a laser with a wavelength of 532 nm was used to thin the electrodes of a QCR with a fundamental frequency of 10 MHz. The electrode surface was etched through a preset processing pattern to form a processing method of local thinning of the electrode surface. At the same time, the effect of laser etching on silicon dioxide and resonator performance was analyzed. Satisfactory trimming frequency-increasing results were achieved, such as a frequency modulation accuracy of 1 ppm, frequency distribution with good consistency and equivalent parameters with small changes, by the laser partial etching of the resonator electrode. However, when the surface electrode was etched into using through-holes, the attenuation amplitude of the equivalent parameter became larger, especially in terms of the quality factor (Q), which decreased from 63 K to 1 K, and some resonators which had a serious frequency drift of >40%. In this case, a certain number of QCRs were no longer excited to vibrate, which was due to the disappearance of the piezoelectric effect caused by the local thermal phase change in the quartz wafer. |
format | Online Article Text |
id | pubmed-8398294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83982942021-08-29 Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching Zhang, Jun-Lin Liao, Shuang Chen, Cheng Yang, Xiu-Tao Lin, Sheng-Ao Tan, Feng Li, Bing Wang, Wen-Wu Zhong, Zheng-Xiang Zeng, Guang-Gen Micromachines (Basel) Article A quartz crystal resonator (QCR) is an indispensable electronic component in the field of the modern electronics industry. By designing and depositing electrodes of different shapes and thicknesses on a quartz wafer with a certain fundamental frequency, the desired target frequency can be obtained. Affected by factors such as the deposition equipment, mask, wafer size and placement position, it is difficult to accurately obtain the target frequency at a given time, especially for mass-produced QCRs. In this work, a laser with a wavelength of 532 nm was used to thin the electrodes of a QCR with a fundamental frequency of 10 MHz. The electrode surface was etched through a preset processing pattern to form a processing method of local thinning of the electrode surface. At the same time, the effect of laser etching on silicon dioxide and resonator performance was analyzed. Satisfactory trimming frequency-increasing results were achieved, such as a frequency modulation accuracy of 1 ppm, frequency distribution with good consistency and equivalent parameters with small changes, by the laser partial etching of the resonator electrode. However, when the surface electrode was etched into using through-holes, the attenuation amplitude of the equivalent parameter became larger, especially in terms of the quality factor (Q), which decreased from 63 K to 1 K, and some resonators which had a serious frequency drift of >40%. In this case, a certain number of QCRs were no longer excited to vibrate, which was due to the disappearance of the piezoelectric effect caused by the local thermal phase change in the quartz wafer. MDPI 2021-07-28 /pmc/articles/PMC8398294/ /pubmed/34442516 http://dx.doi.org/10.3390/mi12080894 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Jun-Lin Liao, Shuang Chen, Cheng Yang, Xiu-Tao Lin, Sheng-Ao Tan, Feng Li, Bing Wang, Wen-Wu Zhong, Zheng-Xiang Zeng, Guang-Gen Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching |
title | Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching |
title_full | Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching |
title_fullStr | Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching |
title_full_unstemmed | Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching |
title_short | Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching |
title_sort | research on trimming frequency-increasing technology for quartz crystal resonator using laser etching |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398294/ https://www.ncbi.nlm.nih.gov/pubmed/34442516 http://dx.doi.org/10.3390/mi12080894 |
work_keys_str_mv | AT zhangjunlin researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT liaoshuang researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT chencheng researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT yangxiutao researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT linshengao researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT tanfeng researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT libing researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT wangwenwu researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT zhongzhengxiang researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching AT zengguanggen researchontrimmingfrequencyincreasingtechnologyforquartzcrystalresonatorusinglaseretching |