Cargando…
Privacy-Preserving and Lightweight Selective Aggregation with Fault-Tolerance for Edge Computing-Enhanced IoT
Edge computing has been introduced to the Internet of Things (IoT) to meet the requirements of IoT applications. At the same time, data aggregation is widely used in data processing to reduce the communication overhead and energy consumption in IoT. Most existing schemes aggregate the overall data w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398313/ https://www.ncbi.nlm.nih.gov/pubmed/34450808 http://dx.doi.org/10.3390/s21165369 |
Sumario: | Edge computing has been introduced to the Internet of Things (IoT) to meet the requirements of IoT applications. At the same time, data aggregation is widely used in data processing to reduce the communication overhead and energy consumption in IoT. Most existing schemes aggregate the overall data without filtering. In addition, aggregation schemes also face huge challenges, such as the privacy of the individual IoT device’s data or the fault-tolerant and lightweight requirements of the schemes. In this paper, we present a privacy-preserving and lightweight selective aggregation scheme with fault tolerance (PLSA-FT) for edge computing-enhanced IoT. In PLSA-FT, selective aggregation can be achieved by constructing Boolean responses and numerical responses according to specific query conditions of the cloud center. Furthermore, we modified the basic Paillier homomorphic encryption to guarantee data privacy and support fault tolerance of IoT devices’ malfunctions. An online/offline signature mechanism is utilized to reduce computation costs. The system characteristic analyses prove that the PLSA-FT scheme achieves confidentiality, privacy preservation, source authentication, integrity verification, fault tolerance, and dynamic membership management. Moreover, performance evaluation results show that PLSA-FT is lightweight with low computation costs and communication overheads. |
---|