Cargando…
Selective Subject Pooling Strategy to Improve Model Generalization for a Motor Imagery BCI †
Brain–computer interfaces (BCIs) facilitate communication for people who cannot move their own body. A BCI system requires a lengthy calibration phase to produce a reasonable classifier. To reduce the duration of the calibration phase, it is natural to attempt to create a subject-independent classif...
Autores principales: | Won, Kyungho, Kwon, Moonyoung, Ahn, Minkyu, Jun, Sung Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398320/ https://www.ncbi.nlm.nih.gov/pubmed/34450878 http://dx.doi.org/10.3390/s21165436 |
Ejemplares similares
-
High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery
por: Ahn, Minkyu, et al.
Publicado: (2013) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Review of public motor imagery and execution datasets in brain-computer interfaces
por: Gwon, Daeun, et al.
Publicado: (2023) -
Corrigendum: Review of public motor imagery and execution datasets in brain-computer interfaces
por: Gwon, Daeun, et al.
Publicado: (2023) -
EEG Dataset for RSVP and P300 Speller Brain-Computer Interfaces
por: Won, Kyungho, et al.
Publicado: (2022)