Cargando…

Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach

In a fast-growing population of the world and regarding meeting consumer’s requirements, solid waste landfills will continue receiving a substantial amount of waste. The utilization of solid waste materials in concrete has gained the attention of the researchers. Ceramic waste powder (CWP) is consid...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Hongwei, Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Dudek, Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398330/
https://www.ncbi.nlm.nih.gov/pubmed/34443041
http://dx.doi.org/10.3390/ma14164518
Descripción
Sumario:In a fast-growing population of the world and regarding meeting consumer’s requirements, solid waste landfills will continue receiving a substantial amount of waste. The utilization of solid waste materials in concrete has gained the attention of the researchers. Ceramic waste powder (CWP) is considered to be one of the most harmful wastes for the environment, which may cause water, soil, and air pollution. The aim of this study was comprised of two phases. Phase one was based on the characterization of CWP with respect to its composition, material testing (coarse aggregate, fine aggregate, cement,) and evaluation of concrete properties both in fresh and hardened states (slump, 28 days compressive strength, and dry density). Concrete mixes were prepared in order to evaluate the compressive strength (CS) of the control mix, with partial replacement of the cement with CWP of 10 and 20% by mass of cement and 60 prepared mixes. However, phase two was based on the application of the artificial neural network (ANN) and decision tree (DT) approaches, which were used to predict the CS of concrete. The linear coefficient correlation (R(2)) value from the ANN model indicates better performance of the model. Moreover, the statistical check and k-fold cross validation methods were also applied for the performance confirmation of the model. The mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to confirm the model’s precision.