Cargando…
Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach
In a fast-growing population of the world and regarding meeting consumer’s requirements, solid waste landfills will continue receiving a substantial amount of waste. The utilization of solid waste materials in concrete has gained the attention of the researchers. Ceramic waste powder (CWP) is consid...
Autores principales: | Song, Hongwei, Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Dudek, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398330/ https://www.ncbi.nlm.nih.gov/pubmed/34443041 http://dx.doi.org/10.3390/ma14164518 |
Ejemplares similares
-
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Xu, Yue, et al.
Publicado: (2021) -
ANN-Based Fatigue Strength of Concrete under Compression
por: Abambres, Miguel, et al.
Publicado: (2019) -
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network
por: Amar, Mouhamadou, et al.
Publicado: (2022) -
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021)