Cargando…
Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements
Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper-limb motions is lost in the process of feature e...
Autores principales: | Zhong, Tianyang, Li, Donglin, Wang, Jianhui, Xu, Jiacan, An, Zida, Zhu, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398355/ https://www.ncbi.nlm.nih.gov/pubmed/34450825 http://dx.doi.org/10.3390/s21165385 |
Ejemplares similares
-
sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm
por: Bu, Dongdong, et al.
Publicado: (2022) -
SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training
por: Cai, Siqi, et al.
Publicado: (2019) -
Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement
por: Guo, Shuxiang, et al.
Publicado: (2015) -
Low-Density sEMG-Based Pattern Recognition of Unrelated Movements Rejection for Wrist Joint Rehabilitation
por: Bu, Dongdong, et al.
Publicado: (2023) -
Feature Fusion-Based Improved Capsule Network for sEMG Signal Recognition
por: Wang, Wanliang, et al.
Publicado: (2022)