Cargando…
Bioethanol Production and Alkali Pulp Processes as Sources of Anionic Lignin Surfactants
Lignin is an abundant biopolymer with potential value-added applications that depend on biomass source and fractioning method. This work explores the use as emulsifiers of three native lignin-rich product coming from industrial bioethanol production and alkali or Kraft pulping. In addition to their...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398361/ https://www.ncbi.nlm.nih.gov/pubmed/34451242 http://dx.doi.org/10.3390/polym13162703 |
Sumario: | Lignin is an abundant biopolymer with potential value-added applications that depend on biomass source and fractioning method. This work explores the use as emulsifiers of three native lignin-rich product coming from industrial bioethanol production and alkali or Kraft pulping. In addition to their distinctive characteristics, the different molecular organization induced by emulsification pH is expected to interact in various ways at the water-oil interface of the emulsion droplets. Initially, model oil-in-water (O/W) emulsions of a silicone oil will be studied as a function of lignin source, disperse phase concentration and emulsification pH. Once stablished the effect of such variables, emulsion formulations of three potential bitumen rejuvenators (waste vegetable cooking oil, recycled lubricating oil and a 160/220 penetration range soft bitumen). Droplet size distribution, Z-potential and viscous tests conducted on model emulsions have shown that emulsification pH strongly affects stabilization ability of the lignins tested. Regarding bitumen rejuvenators, lignin emulsification capability will be affected by surfactant source, pH and, additionally, by the dispersed phase characteristics. Lower Z-potential values shown by KL at pH 9 and 11 seem to facilitate emulsification of the less polar disperse phases formed by RLUB and bitumen. In any case, lower particle size and higher yield stress values were found for both bioethanol-derived lignins emulsifying RVO and RLUB at pH 13, which are expected to exhibit a longer stability. |
---|