Cargando…
Using Machine Learning for Remote Behaviour Classification—Verifying Acceleration Data to Infer Feeding Events in Free-Ranging Cheetahs
Behavioural studies of elusive wildlife species are challenging but important when they are threatened and involved in human-wildlife conflicts. Accelerometers (ACCs) and supervised machine learning algorithms (MLAs) are valuable tools to remotely determine behaviours. Here we used five captive chee...
Autores principales: | Giese, Lisa, Melzheimer, Jörg, Bockmühl, Dirk, Wasiolka, Bernd, Rast, Wanja, Berger, Anne, Wachter, Bettina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398415/ https://www.ncbi.nlm.nih.gov/pubmed/34450868 http://dx.doi.org/10.3390/s21165426 |
Ejemplares similares
-
Immunogenetic Variation and Differential Pathogen Exposure in Free-Ranging Cheetahs across Namibian Farmlands
por: Castro-Prieto, Aines, et al.
Publicado: (2012) -
Coping with intrasexual behavioral differences: Capture–recapture abundance estimation of male cheetah
por: Edwards, Sarah, et al.
Publicado: (2018) -
Cheetahs have a stronger constitutive innate immunity than leopards
por: Heinrich, Sonja K., et al.
Publicado: (2017) -
The Conflict between Cheetahs and Humans on Namibian Farmland Elucidated by Stable Isotope Diet Analysis
por: Voigt, Christian C., et al.
Publicado: (2014) -
Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours
por: Rast, Wanja, et al.
Publicado: (2020)