Cargando…

Targeting Intracellular Mycobacteria Using Nanosized Niosomes Loaded with Antibacterial Agents

Background: Pathogenic intracellular mycobacteria are challenging to treat because of the waxy and complex cell wall characterizing the genus. Niosomes are vesicles with biomimetic cell membrane composition, which allow them to efficiently bind to the eukaryotic cells and deliver their cargo into th...

Descripción completa

Detalles Bibliográficos
Autores principales: Slavin, Yael Nicole, Ivanova, Kristina, Tang, Wei-lun, Tzanov, Tzanko, Li, Shyh-dar, Bach, Horacio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398725/
https://www.ncbi.nlm.nih.gov/pubmed/34443815
http://dx.doi.org/10.3390/nano11081984
Descripción
Sumario:Background: Pathogenic intracellular mycobacteria are challenging to treat because of the waxy and complex cell wall characterizing the genus. Niosomes are vesicles with biomimetic cell membrane composition, which allow them to efficiently bind to the eukaryotic cells and deliver their cargo into the cytoplasm. The objective of this study was to develop a new platform based on niosomes loaded with antimicrobial agents to target intracellular mycobacteria. Nanoniosomes were fabricated and loaded with antibiotics and lignin–silver nanoparticles. The efficacy of these nanoniosomes was tested against the intracellular pathogen Mycobacterium abscessus used as a model of infection of human-derived macrophages (THP-1). The cytotoxicity and the immunological response of the agents were tested on THP-1 cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the secretion of pro- and anti-inflammatory cytokines, respectively. Results: M. abscessus was susceptible to the nanoniosomes in infected THP-1 macrophages, suggesting that the nanoniosomes were internalized due to their fusion to the macrophage cellular membrane. Moreover, nanoniosomes showed no upregulation of pro-inflammatory cytokines when exposed to THP-1 macrophages. Conclusions: Nanoniosomes improved drug efficacy while decreasing toxicity and should be considered for further testing in the treatment of intracellular pathogenic mycobacteria or as a new platform for precise intracellular delivery of drugs.