Cargando…

Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida

Tropical and subtropical mangrove swamps, under normal conditions, can sequester large amounts of carbon in their soils but as coastal wetlands, they are prone to hurricane disturbances. This study adds to the understanding of carbon storage capabilities of mangrove wetlands and explores how these c...

Descripción completa

Detalles Bibliográficos
Autores principales: Griffiths, Lauren N., Mitsch, William J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398776/
https://www.ncbi.nlm.nih.gov/pubmed/34451794
http://dx.doi.org/10.3390/plants10081749
_version_ 1783744919370727424
author Griffiths, Lauren N.
Mitsch, William J.
author_facet Griffiths, Lauren N.
Mitsch, William J.
author_sort Griffiths, Lauren N.
collection PubMed
description Tropical and subtropical mangrove swamps, under normal conditions, can sequester large amounts of carbon in their soils but as coastal wetlands, they are prone to hurricane disturbances. This study adds to the understanding of carbon storage capabilities of mangrove wetlands and explores how these capacities might change within the scope of a changing storm climate. In September 2017, Naples Bay, FL, USA (28°5′ N, 81°47′ W) encountered a direct hit from hurricane Irma, a Saffir–Simpson category 3 storm. By comparing carbon storage, forest community structure, and aboveground productivity collected in 2013 and in 2019, we estimated the effects of hurricane Irma on mangrove functions. Aboveground biomass increased during the study period at a rate of approximately 0.72 kg m(−2) yr(−1), significantly less than the average found in undisturbed mangrove forests. Soil carbon storage decreased at all study sites. On average, 2.7 kg-C m(−2) was lost in the top 20 cm between sample collections. Carbon loss in belowground pools could point to a feedback of mangrove swamps on climate change as they lose their ability to store carbon and increase net atmospheric carbon. Nevertheless, mangrove swamps remain resilient to tropical storms in the long term and can recover their carbon storage capacity in the years following a storm.
format Online
Article
Text
id pubmed-8398776
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83987762021-08-29 Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida Griffiths, Lauren N. Mitsch, William J. Plants (Basel) Article Tropical and subtropical mangrove swamps, under normal conditions, can sequester large amounts of carbon in their soils but as coastal wetlands, they are prone to hurricane disturbances. This study adds to the understanding of carbon storage capabilities of mangrove wetlands and explores how these capacities might change within the scope of a changing storm climate. In September 2017, Naples Bay, FL, USA (28°5′ N, 81°47′ W) encountered a direct hit from hurricane Irma, a Saffir–Simpson category 3 storm. By comparing carbon storage, forest community structure, and aboveground productivity collected in 2013 and in 2019, we estimated the effects of hurricane Irma on mangrove functions. Aboveground biomass increased during the study period at a rate of approximately 0.72 kg m(−2) yr(−1), significantly less than the average found in undisturbed mangrove forests. Soil carbon storage decreased at all study sites. On average, 2.7 kg-C m(−2) was lost in the top 20 cm between sample collections. Carbon loss in belowground pools could point to a feedback of mangrove swamps on climate change as they lose their ability to store carbon and increase net atmospheric carbon. Nevertheless, mangrove swamps remain resilient to tropical storms in the long term and can recover their carbon storage capacity in the years following a storm. MDPI 2021-08-23 /pmc/articles/PMC8398776/ /pubmed/34451794 http://dx.doi.org/10.3390/plants10081749 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Griffiths, Lauren N.
Mitsch, William J.
Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida
title Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida
title_full Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida
title_fullStr Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida
title_full_unstemmed Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida
title_short Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida
title_sort estimating the effects of a hurricane on carbon storage in mangrove wetlands in southwest florida
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398776/
https://www.ncbi.nlm.nih.gov/pubmed/34451794
http://dx.doi.org/10.3390/plants10081749
work_keys_str_mv AT griffithslaurenn estimatingtheeffectsofahurricaneoncarbonstorageinmangrovewetlandsinsouthwestflorida
AT mitschwilliamj estimatingtheeffectsofahurricaneoncarbonstorageinmangrovewetlandsinsouthwestflorida