Cargando…
Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic
Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has be...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398803/ https://www.ncbi.nlm.nih.gov/pubmed/34445052 http://dx.doi.org/10.3390/nu13082894 |
_version_ | 1783744925708320768 |
---|---|
author | Carmean, Christopher M. Mimoto, Mizuho Landeche, Michael Ruiz, Daniel Chellan, Bijoy Zhao, Lidan Schulz, Margaret C. Dumitrescu, Alexandra M. Sargis, Robert M. |
author_facet | Carmean, Christopher M. Mimoto, Mizuho Landeche, Michael Ruiz, Daniel Chellan, Bijoy Zhao, Lidan Schulz, Margaret C. Dumitrescu, Alexandra M. Sargis, Robert M. |
author_sort | Carmean, Christopher M. |
collection | PubMed |
description | Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has been thought to be partially treatable with selenium supplementation, though a potential interaction between selenium and arsenic had not been evaluated under longer-term exposure models. The purpose of the present study was to explore whether selenium status may augment arsenic’s effects during chronic arsenic exposure. To test this possibility, mice were exposed to arsenic in their drinking water and provided ad libitum access to either a diet replete with selenium (Control) or deficient in selenium (SelD). Arsenic significantly improved glucose tolerance and decreased insulin secretion and β-cell function in vivo. Dietary selenium deficiency resulted in similar effects on glucose tolerance and insulin secretion, with significant interactions between arsenic and dietary conditions in select insulin-related parameters. The findings of this study highlight the complexity of arsenic’s metabolic effects and suggest that selenium deficiency may interact with arsenic exposure on β-cell-related physiological parameters. |
format | Online Article Text |
id | pubmed-8398803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83988032021-08-29 Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic Carmean, Christopher M. Mimoto, Mizuho Landeche, Michael Ruiz, Daniel Chellan, Bijoy Zhao, Lidan Schulz, Margaret C. Dumitrescu, Alexandra M. Sargis, Robert M. Nutrients Article Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has been thought to be partially treatable with selenium supplementation, though a potential interaction between selenium and arsenic had not been evaluated under longer-term exposure models. The purpose of the present study was to explore whether selenium status may augment arsenic’s effects during chronic arsenic exposure. To test this possibility, mice were exposed to arsenic in their drinking water and provided ad libitum access to either a diet replete with selenium (Control) or deficient in selenium (SelD). Arsenic significantly improved glucose tolerance and decreased insulin secretion and β-cell function in vivo. Dietary selenium deficiency resulted in similar effects on glucose tolerance and insulin secretion, with significant interactions between arsenic and dietary conditions in select insulin-related parameters. The findings of this study highlight the complexity of arsenic’s metabolic effects and suggest that selenium deficiency may interact with arsenic exposure on β-cell-related physiological parameters. MDPI 2021-08-23 /pmc/articles/PMC8398803/ /pubmed/34445052 http://dx.doi.org/10.3390/nu13082894 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carmean, Christopher M. Mimoto, Mizuho Landeche, Michael Ruiz, Daniel Chellan, Bijoy Zhao, Lidan Schulz, Margaret C. Dumitrescu, Alexandra M. Sargis, Robert M. Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic |
title | Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic |
title_full | Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic |
title_fullStr | Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic |
title_full_unstemmed | Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic |
title_short | Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic |
title_sort | dietary selenium deficiency partially mimics the metabolic effects of arsenic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398803/ https://www.ncbi.nlm.nih.gov/pubmed/34445052 http://dx.doi.org/10.3390/nu13082894 |
work_keys_str_mv | AT carmeanchristopherm dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT mimotomizuho dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT landechemichael dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT ruizdaniel dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT chellanbijoy dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT zhaolidan dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT schulzmargaretc dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT dumitrescualexandram dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic AT sargisrobertm dietaryseleniumdeficiencypartiallymimicsthemetaboliceffectsofarsenic |