Cargando…
Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion
This paper proposes an estimation approach for tool wear and surface roughness using deep learning and sensor fusion. The one-dimensional convolutional neural network (1D-CNN) is utilized as the estimation model with X- and Y-coordinate vibration signals and sound signal fusion using sensor influenc...
Autores principales: | Huang, Pao-Ming, Lee, Ching-Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398943/ https://www.ncbi.nlm.nih.gov/pubmed/34450780 http://dx.doi.org/10.3390/s21165338 |
Ejemplares similares
-
Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear
por: de Agustina, Beatriz, et al.
Publicado: (2014) -
An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces
por: Liang, Guoxing, et al.
Publicado: (2018) -
Effect of Surface Topography Parameters on Friction and Wear of Random Rough Surface
por: Shi, Ruimin, et al.
Publicado: (2019) -
Analysis of Tool Wear and Roughness of Graphite Surfaces Machined Using MCD and NCD-Coated Ball Endmills
por: Lee, Hyeonhwa, et al.
Publicado: (2022) -
Modeling Adhesive Wear in Asperity and Rough Surface Contacts: A Review
por: Zhang, Haibo, et al.
Publicado: (2022)