Cargando…
A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost
Currently, face-swapping deepfake techniques are widely spread, generating a significant number of highly realistic fake videos that threaten the privacy of people and countries. Due to their devastating impacts on the world, distinguishing between real and deepfake videos has become a fundamental i...
Autores principales: | Ismail, Aya, Elpeltagy, Marwa, S. Zaki, Mervat, Eldahshan, Kamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398984/ https://www.ncbi.nlm.nih.gov/pubmed/34450855 http://dx.doi.org/10.3390/s21165413 |
Ejemplares similares
-
Deepfake video detection: YOLO-Face convolution recurrent approach
por: Ismail, Aya, et al.
Publicado: (2021) -
On the Generalization of Deep Learning Models in Video Deepfake Detection
por: Coccomini, Davide Alessandro, et al.
Publicado: (2023) -
Deepfake Video Detection Based on EfficientNet-V2 Network
por: Deng, Liwei, et al.
Publicado: (2022) -
Deepfakes, Fake Barns, and Knowledge from Videos
por: Matthews, Taylor
Publicado: (2023) -
Improved Optical Flow Estimation Method for Deepfake Videos
por: Nassif, Ali Bou, et al.
Publicado: (2022)