Cargando…

Electroactive Polymers Obtained by Conventional and Non-Conventional Technologies

Electroactive polymers (EAPs), materials that present size/shape alteration in response to an electrical stimulus, are currently being explored regarding advanced smart devices, namely robotics, valves, soft actuators, artificial muscles, and electromechanical sensors. They are generally prepared th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanaan, Akel F., Pinho, Ana C., Piedade, Ana P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399042/
https://www.ncbi.nlm.nih.gov/pubmed/34451256
http://dx.doi.org/10.3390/polym13162713
Descripción
Sumario:Electroactive polymers (EAPs), materials that present size/shape alteration in response to an electrical stimulus, are currently being explored regarding advanced smart devices, namely robotics, valves, soft actuators, artificial muscles, and electromechanical sensors. They are generally prepared through conventional techniques (e.g., solvent casting and free-radical polymerization). However, non-conventional processes such as those included in additive manufacturing (AM) are emerging as a novel approach to tune and enhance the electromechanical properties of EAPs to expand the scope of areas for this class of electro-responsive material. This review aims to summarize the published work (from the last five years) in developing EAPs either by conventional or non-conventional polymer processing approaches. The technology behind each processing technique is discussed as well as the main mechanism behind the electromechanical response. The most common polymer-based materials used in the design of current EAPs are reviewed. Therefore, the main conclusions and future trends regarding EAPs obtained by conventional and non-conventional technologies are also given.