Cargando…

Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality

Brackish water desalination, using the reverse osmosis (BWRO) process, has become common in global regions, where vast reserves of brackish groundwater are found (e.g., the United States, North Africa). A literature survey and detailed analyses of several BWRO facilities in Florida have revealed som...

Descripción completa

Detalles Bibliográficos
Autores principales: Pearson, Jeffrey L., Michael, Peter R., Ghaffour, Noreddine, Missimer, Thomas M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399043/
https://www.ncbi.nlm.nih.gov/pubmed/34436379
http://dx.doi.org/10.3390/membranes11080616
_version_ 1783744982447816704
author Pearson, Jeffrey L.
Michael, Peter R.
Ghaffour, Noreddine
Missimer, Thomas M.
author_facet Pearson, Jeffrey L.
Michael, Peter R.
Ghaffour, Noreddine
Missimer, Thomas M.
author_sort Pearson, Jeffrey L.
collection PubMed
description Brackish water desalination, using the reverse osmosis (BWRO) process, has become common in global regions, where vast reserves of brackish groundwater are found (e.g., the United States, North Africa). A literature survey and detailed analyses of several BWRO facilities in Florida have revealed some interesting and valuable information on the costs and energy use. Depending on the capacity, water quality, and additional scope items, the capital cost (CAPEX) ranges from USD 500 to USD 2947/m(3) of the capacity (USD 690–USD 4067/m(3) corrected for inflation to 2020). The highest number was associated with the City of Cape Coral North Plant, Florida, which had an expanded project scope. The general range of the operating cost (OPEX) is USD 0.39 to USD 0.66/m(3) (cannot be corrected for inflation), for a range of capacities from 10,000 to 70,000 m(3)/d. The feed-water quality, in the range of 2000 to 6000 mg/L of the total dissolved solids, does not significantly impact the OPEX. There is a significant scaling trend, with OPEX cost reducing as plant capacity increases, but there is considerable scatter based on the pre- and post-treatment complexity. Many BWRO facilities operate with long-term increases in the salinity of the feedwater (groundwater), caused by pumping-induced vertical and horizontal migration of the higher salinity water. Any cost and energy increase that is caused by the higher feed water salinity, can be significantly mitigated by using energy recovery, which is not commonly used in BWRO operations. OPEX in BWRO systems is likely to remain relatively constant, based on the limitation on the plant capacity, caused by the brackish water availability at a given site. Seawater reverse osmosis facilities, with a very large capacity, have a lower OPEX compared to the upper range of BWRO, because of capacity scaling, special electrical energy deals, and process design certainty.
format Online
Article
Text
id pubmed-8399043
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83990432021-08-29 Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality Pearson, Jeffrey L. Michael, Peter R. Ghaffour, Noreddine Missimer, Thomas M. Membranes (Basel) Review Brackish water desalination, using the reverse osmosis (BWRO) process, has become common in global regions, where vast reserves of brackish groundwater are found (e.g., the United States, North Africa). A literature survey and detailed analyses of several BWRO facilities in Florida have revealed some interesting and valuable information on the costs and energy use. Depending on the capacity, water quality, and additional scope items, the capital cost (CAPEX) ranges from USD 500 to USD 2947/m(3) of the capacity (USD 690–USD 4067/m(3) corrected for inflation to 2020). The highest number was associated with the City of Cape Coral North Plant, Florida, which had an expanded project scope. The general range of the operating cost (OPEX) is USD 0.39 to USD 0.66/m(3) (cannot be corrected for inflation), for a range of capacities from 10,000 to 70,000 m(3)/d. The feed-water quality, in the range of 2000 to 6000 mg/L of the total dissolved solids, does not significantly impact the OPEX. There is a significant scaling trend, with OPEX cost reducing as plant capacity increases, but there is considerable scatter based on the pre- and post-treatment complexity. Many BWRO facilities operate with long-term increases in the salinity of the feedwater (groundwater), caused by pumping-induced vertical and horizontal migration of the higher salinity water. Any cost and energy increase that is caused by the higher feed water salinity, can be significantly mitigated by using energy recovery, which is not commonly used in BWRO operations. OPEX in BWRO systems is likely to remain relatively constant, based on the limitation on the plant capacity, caused by the brackish water availability at a given site. Seawater reverse osmosis facilities, with a very large capacity, have a lower OPEX compared to the upper range of BWRO, because of capacity scaling, special electrical energy deals, and process design certainty. MDPI 2021-08-12 /pmc/articles/PMC8399043/ /pubmed/34436379 http://dx.doi.org/10.3390/membranes11080616 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Pearson, Jeffrey L.
Michael, Peter R.
Ghaffour, Noreddine
Missimer, Thomas M.
Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality
title Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality
title_full Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality
title_fullStr Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality
title_full_unstemmed Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality
title_short Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality
title_sort economics and energy consumption of brackish water reverse osmosis desalination: innovations and impacts of feedwater quality
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399043/
https://www.ncbi.nlm.nih.gov/pubmed/34436379
http://dx.doi.org/10.3390/membranes11080616
work_keys_str_mv AT pearsonjeffreyl economicsandenergyconsumptionofbrackishwaterreverseosmosisdesalinationinnovationsandimpactsoffeedwaterquality
AT michaelpeterr economicsandenergyconsumptionofbrackishwaterreverseosmosisdesalinationinnovationsandimpactsoffeedwaterquality
AT ghaffournoreddine economicsandenergyconsumptionofbrackishwaterreverseosmosisdesalinationinnovationsandimpactsoffeedwaterquality
AT missimerthomasm economicsandenergyconsumptionofbrackishwaterreverseosmosisdesalinationinnovationsandimpactsoffeedwaterquality