Cargando…
LATE–a novel sensitive cell-based assay for the study of CRISPR/Cas9-related long-term adverse treatment effects
Since the introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), genome editing has been broadly applied in basic research and applied biotechnology, whereas translation into clinical testing has raised safety concerns. Indeed, although...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399046/ https://www.ncbi.nlm.nih.gov/pubmed/34485609 http://dx.doi.org/10.1016/j.omtm.2021.07.004 |
Sumario: | Since the introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), genome editing has been broadly applied in basic research and applied biotechnology, whereas translation into clinical testing has raised safety concerns. Indeed, although frequencies and locations of off-target events have been widely addressed, little is known about their potential biological consequences in large-scale long-term settings. We have developed a long-term adverse treatment effect (LATE) in vitro assay that addresses potential toxicity of designer nucleases by assessing cell transformation events. In small-scale proof-of-principle experiments we reproducibly detected low-frequency (<0.5%) growth-promoting events in primary human newborn foreskin fibroblasts (NUFF cells) resulting from off-target cleavage in the TP53 gene. Importantly, the LATE assay detected not only off-target effects in TP53 not predicted by popular online tools but also growth-promoting mutations in other tumor suppressor genes, such as p21 and PLZF. It convincingly verified strongly reduced off-target activities of high fidelity compared with first-generation Cas9. Finally, the LATE assay was readily adapted to other cell types, namely clinically relevant human mesenchymal stromal cells (hMSCs) and retinal pigmented epithelial (RPE-1) cells. In conclusion, the LATE assay allows assessment of physiological adverse effects of the CRISPR/Cas system and might therefore be useful for preclinical safety studies. |
---|