Cargando…

Antioxidant Activity and Anti-Photoaging Effects on UVA-Irradiated Human Fibroblasts of Rosmarinic Acid Enriched Extract Prepared from Thunbergia laurifolia Leaves

The current study investigated the inhibiting effect on reactive oxygen species (ROS), reactive nitrogen species (RNS), and matrix metalloproteinase-1 (MMP-1) production in a cell-based study of standardized rosmarinic acid enriched extract (SRAEE) prepared from Thunbergia laurifolia leaves. HPLC ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Pattananandecha, Thanawat, Apichai, Sutasinee, Julsrigival, Jakaphun, Ungsurungsie, Malyn, Samuhasaneetoo, Suched, Chulasiri, Pat, Kwankhao, Pakakrong, Pitiporn, Supaporn, Ogata, Fumihiko, Kawasaki, Naohito, Saenjum, Chalermpong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399148/
https://www.ncbi.nlm.nih.gov/pubmed/34451693
http://dx.doi.org/10.3390/plants10081648
Descripción
Sumario:The current study investigated the inhibiting effect on reactive oxygen species (ROS), reactive nitrogen species (RNS), and matrix metalloproteinase-1 (MMP-1) production in a cell-based study of standardized rosmarinic acid enriched extract (SRAEE) prepared from Thunbergia laurifolia leaves. HPLC chromatogram revealed that rosmarinic acid is a major component in prepared SRAEE, followed by caffeic acid. SRAEE exhibited antioxidant activity both in vitro and cell-based studies. SRAEE showed scavenging effects on nitric oxide and superoxide anion and inhibition effects on lipid peroxidation in vitro. SRAEE also inhibited ROS and MMP-1 production in normal human dermal fibroblast cells induced by H(2)O(2) and UVA, respectively, without exerted cytotoxicity. Additionally, collagen degradation was protected by SRAEE induced by UVA. Nitric oxide and inducible nitric oxide synthase (iNOS) productions were also inhibited by SRAEE in RAW264.7 mouse macrophage cells induced by combined lipopolysaccharide (LPS)-interferon-γ (IFN-γ). The results indicated that SRAEE is a potential candidate as a natural pharmaceutical active ingredient for cosmeceutical product application.