Cargando…
Precise Segmentation of COVID-19 Infected Lung from CT Images Based on Adaptive First-Order Appearance Model with Morphological/Anatomical Constraints
A new segmentation technique is introduced for delineating the lung region in 3D computed tomography (CT) images. To accurately model the distribution of Hounsfield scale values within both chest and lung regions, a new probabilistic model is developed that depends on a linear combination of Gaussia...
Autores principales: | Sharafeldeen, Ahmed, Elsharkawy, Mohamed, Alghamdi, Norah Saleh, Soliman, Ahmed, El-Baz, Ayman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399192/ https://www.ncbi.nlm.nih.gov/pubmed/34450923 http://dx.doi.org/10.3390/s21165482 |
Ejemplares similares
-
A Novel Computer-Aided Diagnostic System for Early Detection of Diabetic Retinopathy Using 3D-OCT Higher-Order Spatial Appearance Model
por: Elsharkawy, Mohamed, et al.
Publicado: (2022) -
Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images
por: Sharafeldeen, A., et al.
Publicado: (2021) -
Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images
por: Elgafi, Mahmoud, et al.
Publicado: (2022) -
3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models
por: Khalifa, Fahmi, et al.
Publicado: (2017) -
Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images
por: Elsharkawy, Mohamed, et al.
Publicado: (2021)