Cargando…

The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells

β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cavallucci, Virve, Pani, Giovambattista
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399199/
https://www.ncbi.nlm.nih.gov/pubmed/34436453
http://dx.doi.org/10.3390/metabo11080512
_version_ 1783745019368177664
author Cavallucci, Virve
Pani, Giovambattista
author_facet Cavallucci, Virve
Pani, Giovambattista
author_sort Cavallucci, Virve
collection PubMed
description β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer and chronic lung disease, as well as in age-dependent sarcopenia. However, the molecular cascades underlying these beneficial effects are largely unknown. HMB bears a significant structural similarity with Butyrate and β-Hydroxybutyrate (βHB), two compounds recognized for important epigenetic and histone-marking activities in multiple cell types including muscle cells. We asked whether similar chromatin-modifying actions could be assigned to HMB as well. Exposure of murine C2C12 myoblasts to millimolar concentrations of HMB led to an increase in global histone acetylation, as monitored by anti-acetylated lysine immunoblotting, while preventing myotube differentiation. In these effects, HMB resembled, although with less potency, the histone deacetylase (HDAC) inhibitor Sodium Butyrate. However, initial studies did not confirm a direct inhibitory effect of HMB on HDACs in vitro. β-Hydroxybutyrate, a ketone body produced by the liver during starvation or intense exercise, has a modest effect on histone acetylation of C2C12 cells or in vitro HDAC inhibitor activities, and, unlike Butyrate and HMB, did not interfere with myotube formation in a myoblast differentiation assay. Instead, βHB dramatically increased lysine β-hydroxybutyrylation (Kbhb) of histone tails, an epigenetic mark associated with fasting responses and muscle catabolic states. However, when C2C12 cells were exposed to βHB in the presence of equimolar HMB this chromatin modification was drastically reduced, pointing to a role for HMB in attenuating ketosis-associated muscle wasting. In conclusion, while their mechanistic underpinnings remain to be clarified, these preliminary observations highlight novel and potentially important activities of HMB as an epigenetic regulator and βHB antagonist in muscle precursor cells, to be further explored in their biomedical implications.
format Online
Article
Text
id pubmed-8399199
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83991992021-08-29 The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells Cavallucci, Virve Pani, Giovambattista Metabolites Communication β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer and chronic lung disease, as well as in age-dependent sarcopenia. However, the molecular cascades underlying these beneficial effects are largely unknown. HMB bears a significant structural similarity with Butyrate and β-Hydroxybutyrate (βHB), two compounds recognized for important epigenetic and histone-marking activities in multiple cell types including muscle cells. We asked whether similar chromatin-modifying actions could be assigned to HMB as well. Exposure of murine C2C12 myoblasts to millimolar concentrations of HMB led to an increase in global histone acetylation, as monitored by anti-acetylated lysine immunoblotting, while preventing myotube differentiation. In these effects, HMB resembled, although with less potency, the histone deacetylase (HDAC) inhibitor Sodium Butyrate. However, initial studies did not confirm a direct inhibitory effect of HMB on HDACs in vitro. β-Hydroxybutyrate, a ketone body produced by the liver during starvation or intense exercise, has a modest effect on histone acetylation of C2C12 cells or in vitro HDAC inhibitor activities, and, unlike Butyrate and HMB, did not interfere with myotube formation in a myoblast differentiation assay. Instead, βHB dramatically increased lysine β-hydroxybutyrylation (Kbhb) of histone tails, an epigenetic mark associated with fasting responses and muscle catabolic states. However, when C2C12 cells were exposed to βHB in the presence of equimolar HMB this chromatin modification was drastically reduced, pointing to a role for HMB in attenuating ketosis-associated muscle wasting. In conclusion, while their mechanistic underpinnings remain to be clarified, these preliminary observations highlight novel and potentially important activities of HMB as an epigenetic regulator and βHB antagonist in muscle precursor cells, to be further explored in their biomedical implications. MDPI 2021-08-04 /pmc/articles/PMC8399199/ /pubmed/34436453 http://dx.doi.org/10.3390/metabo11080512 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Cavallucci, Virve
Pani, Giovambattista
The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
title The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
title_full The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
title_fullStr The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
title_full_unstemmed The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
title_short The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
title_sort leucine catabolite and dietary supplement β-hydroxy-β-methyl butyrate (hmb) as an epigenetic regulator in muscle progenitor cells
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399199/
https://www.ncbi.nlm.nih.gov/pubmed/34436453
http://dx.doi.org/10.3390/metabo11080512
work_keys_str_mv AT cavalluccivirve theleucinecataboliteanddietarysupplementbhydroxybmethylbutyratehmbasanepigeneticregulatorinmuscleprogenitorcells
AT panigiovambattista theleucinecataboliteanddietarysupplementbhydroxybmethylbutyratehmbasanepigeneticregulatorinmuscleprogenitorcells
AT cavalluccivirve leucinecataboliteanddietarysupplementbhydroxybmethylbutyratehmbasanepigeneticregulatorinmuscleprogenitorcells
AT panigiovambattista leucinecataboliteanddietarysupplementbhydroxybmethylbutyratehmbasanepigeneticregulatorinmuscleprogenitorcells