Cargando…
Fingerprint Feature Extraction for Indoor Localization †
This paper proposes a fingerprint-based indoor localization method, named FPFE (fingerprint feature extraction), to locate a target device (TD) whose location is unknown. Bluetooth low energy (BLE) beacon nodes (BNs) are deployed in the localization area to emit beacon packets periodically. The rece...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399203/ https://www.ncbi.nlm.nih.gov/pubmed/34450876 http://dx.doi.org/10.3390/s21165434 |
Sumario: | This paper proposes a fingerprint-based indoor localization method, named FPFE (fingerprint feature extraction), to locate a target device (TD) whose location is unknown. Bluetooth low energy (BLE) beacon nodes (BNs) are deployed in the localization area to emit beacon packets periodically. The received signal strength indication (RSSI) values of beacon packets sent by various BNs are measured at different reference points (RPs) and saved as RPs’ fingerprints in a database. For the purpose of localization, the TD also obtains its fingerprint by measuring the beacon packet RSSI values for various BNs. FPFE then applies either the autoencoder (AE) or principal component analysis (PCA) to extract fingerprint features. It then measures the similarity between the features of PRs and the TD with the Minkowski distance. Afterwards, k RPs associated with the k smallest Minkowski distances are selected to estimate the TD’s location. Experiments are conducted to evaluate the localization error of FPFE. The experimental results show that FPFE achieves an average error of 0.68 m, which is better than those of other related BLE fingerprint-based indoor localization methods. |
---|