Cargando…

Graphene Oxide and Reduced Graphene Oxide Nanoflakes Coated with Glycol Chitosan, Propylene Glycol Alginate, and Polydopamine: Characterization and Cytotoxicity in Human Chondrocytes

Recently, graphene and its derivatives have been extensively investigated for their interesting properties in many biomedical fields, including tissue engineering and regenerative medicine. Nonetheless, graphene oxide (GO) and reduced GO (rGO) are still under investigation for improving their disper...

Descripción completa

Detalles Bibliográficos
Autores principales: Vannozzi, Lorenzo, Catalano, Enrico, Telkhozhayeva, Madina, Teblum, Eti, Yarmolenko, Alina, Avraham, Efrat Shawat, Konar, Rajashree, Nessim, Gilbert Daniel, Ricotti, Leonardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399274/
https://www.ncbi.nlm.nih.gov/pubmed/34443935
http://dx.doi.org/10.3390/nano11082105
Descripción
Sumario:Recently, graphene and its derivatives have been extensively investigated for their interesting properties in many biomedical fields, including tissue engineering and regenerative medicine. Nonetheless, graphene oxide (GO) and reduced GO (rGO) are still under investigation for improving their dispersibility in aqueous solutions and their safety in different cell types. This work explores the interaction of GO and rGO with different polymeric dispersants, such as glycol chitosan (GC), propylene glycol alginate (PGA), and polydopamine (PDA), and their effects on human chondrocytes. GO was synthesized using Hummer’s method, followed by a sonication-assisted liquid-phase exfoliation (LPE) process, drying, and thermal reduction to obtain rGO. The flakes of GO and rGO exhibited an average lateral size of 8.8 ± 4.6 and 18.3 ± 8.5 µm, respectively. Their dispersibility and colloidal stability were investigated in the presence of the polymeric surfactants, resulting in an improvement in the suspension stability in terms of average size and polydispersity index over 1 h, in particular for PDA. Furthermore, cytotoxic effects induced by coated and uncoated GO and rGO on human chondrocytes at different concentrations (12.5, 25, 50 and 100 µg/mL) were assessed through LDH assay. Results showed a concentration-dependent response, and the presence of PGA contributed to statistically decreasing the difference in the LDH activity with respect to the control. These results open the way to a potentially safer use of these nanomaterials in the fields of cartilage tissue engineering and regenerative medicine.