Cargando…

Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating

Lithium-selenium (Li-Se) batteries are a promising energy storage system in electric vehicles due to their high capacity and good kinetics. However, the shuttle effect issue, caused by polyselenide dissolution from the Se cathode, has hampered the development of Li-Se batteries. Herein, we developed...

Descripción completa

Detalles Bibliográficos
Autores principales: Aboonasr Shiraz, Mohammad Hossein, Rehl, Erwin, Kazemian, Hossein, Liu, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399766/
https://www.ncbi.nlm.nih.gov/pubmed/34443807
http://dx.doi.org/10.3390/nano11081976
Descripción
Sumario:Lithium-selenium (Li-Se) batteries are a promising energy storage system in electric vehicles due to their high capacity and good kinetics. However, the shuttle effect issue, caused by polyselenide dissolution from the Se cathode, has hampered the development of Li-Se batteries. Herein, we developed a facile preparation of porous carbon from a metal-organic framework (MOF) to confine Se (Se/CZIF) and protect the Se/CZIF composite with an alucone coating by molecular layer deposition (MLD). The optimal alucone coated Se/CZIF cathode prepared exhibits a one-step reversible charge/discharge process in the carbonate electrolytes. The inhibition of polyselenide dissolution is credited with the improved electrochemical performance, formation of thin and stable solid electrolyte interphase (SEI) layers, and a reduction in charge transfer resistance, thus improving the overall performance of Li-Se batteries.