Cargando…

Comparative Genomics Analyses Reveal the Differences between B. longum subsp. infantis and B. longum subsp. longum in Carbohydrate Utilisation, CRISPR-Cas Systems and Bacteriocin Operons

Bifidobacterium longum is one of the most widely distributed and abundant Bifidobacterium in the human intestine, and has been proven to have a variety of physiological functions. In this study, 80 strains of B. longum isolated from human subjects were classified into subspecies by ANI and phylogene...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mingjie, Zhou, Xingya, Stanton, Catherine, Ross, R. Paul, Zhao, Jianxin, Zhang, Hao, Yang, Bo, Chen, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399906/
https://www.ncbi.nlm.nih.gov/pubmed/34442792
http://dx.doi.org/10.3390/microorganisms9081713
Descripción
Sumario:Bifidobacterium longum is one of the most widely distributed and abundant Bifidobacterium in the human intestine, and has been proven to have a variety of physiological functions. In this study, 80 strains of B. longum isolated from human subjects were classified into subspecies by ANI and phylogenetic analyses, and the functional genes were compared. The results showed that there were significant differences in carbohydrate metabolism between the two subspecies, which determined their preference for human milk oligosaccharides or plant-derived carbohydrates. The predicted exopolysaccharide (EPS) gene clusters had large variability within species but without difference at the subspecies level. Four subtype CRISPR-Cas systems presented in B. longum, while the subtypes I-U and II-C only existed in B. longum subsp. longum. The bacteriocin operons in B. longum subsp. infantis were more widely distributed compared with B. longum subsp. longum. In conclusion, this study revealed the similarities and differences between B. longum subsp. infantis and B. longum subsp. longum, which could provide a theoretical basis for further exploring the probiotic characteristics of B. longum.