Cargando…
Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures
(1) Background: Non-invasive uroflowmetry is used in clinical practice for diagnosing lower urinary tract symptoms (LUTS) and the health status of a patient. To establish a smart system for measuring the flowrate during urination without any temporospatial constraints for patients with a urinary dis...
Autores principales: | Jin, Jie, Chung, Youngbeen, Kim, Wanseung, Heo, Yonggi, Jeon, Jinyong, Hoh, Jeongkyu, Park, Junhong, Jo, Jungki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400043/ https://www.ncbi.nlm.nih.gov/pubmed/34450769 http://dx.doi.org/10.3390/s21165328 |
Ejemplares similares
-
Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM
por: Jin, Jie, et al.
Publicado: (2020) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021) -
A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold
por: Wang, Junhong, et al.
Publicado: (2021) -
THE FILLING AND EMPTYING OF THE GALL BLADDER
por: Copher, Glover H., et al.
Publicado: (1926) -
On the Shape of the Empty Female Bladder
por: Hart, D. Berry
Publicado: (1881)