Cargando…
Using the Stochastic Gradient Descent Optimization Algorithm on Estimating of Reactivity Ratios
This paper describes an improved method of calculating reactivity ratios by applying the neuronal networks optimization algorithm, named gradient descent. The presented method is integral and has been compared to the following existing methods: Fineman–Ross, Tidwell–Mortimer, Kelen–Tüdös, extended K...
Autores principales: | Fazakas-Anca, Iosif Sorin, Modrea, Arina, Vlase, Sorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400145/ https://www.ncbi.nlm.nih.gov/pubmed/34443284 http://dx.doi.org/10.3390/ma14164764 |
Ejemplares similares
-
Determination of Reactivity Ratios from Binary Copolymerization Using the k-Nearest Neighbor Non-Parametric Regression
por: Fazakas-Anca, Iosif Sorin, et al.
Publicado: (2021) -
Aspects Regarding the Innovative Conceptual Design for Children’s Recreational Areas
por: Bucur, Bogdan, et al.
Publicado: (2022) -
Creativity and Generation of Ideas in the Design of Children’s Toys
por: Bucur, Bogdan, et al.
Publicado: (2023) -
Optimization of Gradient Descent Parameters in Attitude Estimation Algorithms
por: Sever, Karla, et al.
Publicado: (2023) -
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023)