Cargando…
Should We Embed in Chemistry? A Comparison of Unsupervised Transfer Learning with PCA, UMAP, and VAE on Molecular Fingerprints
Methods for dimensionality reduction are showing significant contributions to knowledge generation in high-dimensional modeling scenarios throughout many disciplines. By achieving a lower dimensional representation (also called embedding), fewer computing resources are needed in downstream machine l...
Autores principales: | Lovrić, Mario, Đuričić, Tomislav, Tran, Han T. N., Hussain, Hussain, Lacić, Emanuel, Rasmussen, Morten A., Kern, Roman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400160/ https://www.ncbi.nlm.nih.gov/pubmed/34451855 http://dx.doi.org/10.3390/ph14080758 |
Ejemplares similares
-
Unsupervised Outlier Detection in IOT Using Deep VAE
por: Gouda, Walaa, et al.
Publicado: (2022) -
Predicting Treatment Outcomes Using Explainable Machine Learning in Children with Asthma
por: Lovrić, Mario, et al.
Publicado: (2021) -
layerUMAP: A tool for visualizing and understanding deep learning models in biological sequence classification using UMAP
por: Jing, Runyu, et al.
Publicado: (2022) -
Umap and Bismap: quantifying genome and methylome mappability
por: Karimzadeh, Mehran, et al.
Publicado: (2018) -
Application of Aligned-UMAP to longitudinal biomedical studies
por: Dadu, Anant, et al.
Publicado: (2023)