Cargando…
Classification and Visualisation of Normal and Abnormal Radiographs; A Comparison between Eleven Convolutional Neural Network Architectures
This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). The CNNs were used to classify a seri...
Autores principales: | Ananda, Ananda, Ngan, Kwun Ho, Karabağ, Cefa, Ter-Sarkisov, Aram, Alonso, Eduardo, Reyes-Aldasoro, Constantino Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400172/ https://www.ncbi.nlm.nih.gov/pubmed/34450821 http://dx.doi.org/10.3390/s21165381 |
Ejemplares similares
-
Geometric semi-automatic analysis of radiographs of Colles’ fractures
por: Reyes-Aldasoro, Constantino Carlos, et al.
Publicado: (2020) -
Volumetric Semantic Instance Segmentation of the Plasma Membrane of HeLa Cells
por: Karabağ, Cefa, et al.
Publicado: (2021) -
Impact of Training Data, Ground Truth and Shape Variability in the Deep Learning-Based Semantic Segmentation of HeLa Cells Observed with Electron Microscopy
por: Karabağ, Cefa, et al.
Publicado: (2023) -
Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures
por: Karabağ, Cefa, et al.
Publicado: (2020) -
Morphological Estimation of Cellularity on Neo-Adjuvant Treated Breast Cancer Histological Images
por: Ortega-Ruiz, Mauricio Alberto, et al.
Publicado: (2020)