Cargando…
DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface
The formation of ordered 2D nanostructures of double stranded DNA molecules at various interfaces attracts more and more focus in medical and engineering research, but the underlying intermolecular interactions still require elucidation. Recently, it has been revealed that mixtures of DNA with a ser...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400178/ https://www.ncbi.nlm.nih.gov/pubmed/34451359 http://dx.doi.org/10.3390/polym13162820 |
_version_ | 1783745253355814912 |
---|---|
author | Chirkov, Nikolay S. Campbell, Richard A. Michailov, Alexander V. Vlasov, Petr S. Noskov, Boris A. |
author_facet | Chirkov, Nikolay S. Campbell, Richard A. Michailov, Alexander V. Vlasov, Petr S. Noskov, Boris A. |
author_sort | Chirkov, Nikolay S. |
collection | PubMed |
description | The formation of ordered 2D nanostructures of double stranded DNA molecules at various interfaces attracts more and more focus in medical and engineering research, but the underlying intermolecular interactions still require elucidation. Recently, it has been revealed that mixtures of DNA with a series of hydrophobic cationic polyelectrolytes including poly(N,N-diallyl-N-hexyl-N-methylammonium) chloride (PDAHMAC) form a network of ribbonlike or threadlike aggregates at the solution—air interface. In the present work, we adopt a novel approach to confine the same polyelectrolyte at the solution—air interface by spreading it on a subphase with elevated ionic strength. A suite of techniques–rheology, microscopy, ellipsometry, and spectroscopy–are applied to gain insight into main steps of the adsorption layer formation, which results in non-monotonic kinetic dependencies of various surface properties. A long induction period of the kinetic dependencies after DNA is exposed to the surface film results only if the initial surface pressure corresponds to a quasiplateau region of the compression isotherm of a PDAHMAC monolayer. Despite the different aggregation mechanisms, the micromorphology of the mixed PDAHMAC/DNA does not depend noticeably on the initial surface pressure. The results provide new perspective on nanostructure formation involving nucleic acids building blocks. |
format | Online Article Text |
id | pubmed-8400178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84001782021-08-29 DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface Chirkov, Nikolay S. Campbell, Richard A. Michailov, Alexander V. Vlasov, Petr S. Noskov, Boris A. Polymers (Basel) Article The formation of ordered 2D nanostructures of double stranded DNA molecules at various interfaces attracts more and more focus in medical and engineering research, but the underlying intermolecular interactions still require elucidation. Recently, it has been revealed that mixtures of DNA with a series of hydrophobic cationic polyelectrolytes including poly(N,N-diallyl-N-hexyl-N-methylammonium) chloride (PDAHMAC) form a network of ribbonlike or threadlike aggregates at the solution—air interface. In the present work, we adopt a novel approach to confine the same polyelectrolyte at the solution—air interface by spreading it on a subphase with elevated ionic strength. A suite of techniques–rheology, microscopy, ellipsometry, and spectroscopy–are applied to gain insight into main steps of the adsorption layer formation, which results in non-monotonic kinetic dependencies of various surface properties. A long induction period of the kinetic dependencies after DNA is exposed to the surface film results only if the initial surface pressure corresponds to a quasiplateau region of the compression isotherm of a PDAHMAC monolayer. Despite the different aggregation mechanisms, the micromorphology of the mixed PDAHMAC/DNA does not depend noticeably on the initial surface pressure. The results provide new perspective on nanostructure formation involving nucleic acids building blocks. MDPI 2021-08-22 /pmc/articles/PMC8400178/ /pubmed/34451359 http://dx.doi.org/10.3390/polym13162820 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chirkov, Nikolay S. Campbell, Richard A. Michailov, Alexander V. Vlasov, Petr S. Noskov, Boris A. DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface |
title | DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface |
title_full | DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface |
title_fullStr | DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface |
title_full_unstemmed | DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface |
title_short | DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface |
title_sort | dna interaction with a polyelectrolyte monolayer at solution—air interface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400178/ https://www.ncbi.nlm.nih.gov/pubmed/34451359 http://dx.doi.org/10.3390/polym13162820 |
work_keys_str_mv | AT chirkovnikolays dnainteractionwithapolyelectrolytemonolayeratsolutionairinterface AT campbellricharda dnainteractionwithapolyelectrolytemonolayeratsolutionairinterface AT michailovalexanderv dnainteractionwithapolyelectrolytemonolayeratsolutionairinterface AT vlasovpetrs dnainteractionwithapolyelectrolytemonolayeratsolutionairinterface AT noskovborisa dnainteractionwithapolyelectrolytemonolayeratsolutionairinterface |