Cargando…

Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study

Numerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k–ε turbulence model for the flow range 1 × 10(4) ≤ Re ≥ 24 × 10(3). A wide range of...

Descripción completa

Detalles Bibliográficos
Autores principales: Alawi, Omer A., Abdelrazek, Ali H., Aldlemy, Mohammed Suleman, Ahmed, Waqar, Hussein, Omar A., Ghafel, Sukaina Tuama, Khedher, Khaled Mohamed, Scholz, Miklas, Yaseen, Zaher Mundher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400204/
https://www.ncbi.nlm.nih.gov/pubmed/34443809
http://dx.doi.org/10.3390/nano11081979
Descripción
Sumario:Numerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k–ε turbulence model for the flow range 1 × 10(4) ≤ Re ≥ 24 × 10(3). A wide range of parameters like different nanomaterials (Al(2)O(3), CuO, SiO(2) and ZnO), different particle nanoshapes (spherical, cylindrical, blades, platelets and bricks), different heat flux ratio (HFR) (0, 0.5, 1 and 2) and different aspect ratios (AR) (1.5, 2, 2.5 and 3) were examined. Also, the effect of inner cylinder rotation was discussed. An experiment was conducted out using a field-emission scanning electron microscope (FE-SEM) to characterize metallic oxides in spherical morphologies. Nano-platelet particles showed the best enhancements in heat transfer properties, followed by nano-cylinders, nano-bricks, nano-blades, and nano-spheres. The maximum heat transfer enhancement was found in SiO(2), followed by ZnO, CuO, and Al(2)O(3), in that order. Meanwhile, the effect of the HFR parameter was insignificant. At Re = 24,000, the inner wall rotation enhanced the heat transfer about 47.94%, 43.03%, 42.06% and 39.79% for SiO(2), ZnO, CuO and Al(2)O(3), respectively. Moreover, the AR of 2.5 presented the higher heat transfer improvement followed by 3, 2, and 1.5.