Cargando…

Chemical Modification of Poly(butylene trans-1,4-cyclohexanedicarboxylate) by Camphor: A New Example of Bio-Based Polyesters for Sustainable Food Packaging

Among the several actions contributing to the development of a sustainable society, there is the eco-design of new plastic materials with zero environmental impact but that are possibly characterized by properties comparable to those of the traditional fossil-based plastics. This action is particula...

Descripción completa

Detalles Bibliográficos
Autores principales: Guidotti, Giulia, Burzotta, Gianfranco, Soccio, Michelina, Gazzano, Massimo, Siracusa, Valentina, Munari, Andrea, Lotti, Nadia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400230/
https://www.ncbi.nlm.nih.gov/pubmed/34451247
http://dx.doi.org/10.3390/polym13162707
Descripción
Sumario:Among the several actions contributing to the development of a sustainable society, there is the eco-design of new plastic materials with zero environmental impact but that are possibly characterized by properties comparable to those of the traditional fossil-based plastics. This action is particularly urgent for food packaging sector, which involves large volumes of plastic products that quickly become waste. This work aims to contribute to the achievement of this important goal, proposing new bio-based cycloaliphatic polymers based on trans-1,4-cyclohexanedicarboxylic acid and containing different amount of camphoric acid (from 0 to 15 mol %), a cheap and bio-based building block. Such chemical modification was conducted in the melt by avoiding the use of solvents. The so-obtained polymers were processed in the form of films by compression molding. Afterwards, the new and successfully synthesized random copolymers were characterized by molecular (NMR spectroscopy and GPC analysis), thermal (DSC and TGA analyses), diffractometric (wide angle X-ray scattering), mechanical (through tensile tests), and O(2) and CO(2) barrier point of view together with the parent homopolymer. The article aims to relate the results obtained with the amount of camphoric moiety introduced and to present, the different microstructure in the copolymers in more detail; indeed, in these samples, a different crystalline form developed (the so-called β-PBCE). This latter form was the kinetically favored and less packed one, as proven by the lower equilibrium melting temperature determined for the first time by Baur’s equation.