Cargando…

Effect of Mixer Type on Particle Coating by Magnesium Stearate for Friction and Adhesion Modification

Glidants and lubricants are often used to modify interparticle friction and adhesion in order to improve powder characteristics, such as flowability and compactability. Magnesium stearate (MgSt) powder is widely used as a lubricant. Shear straining causes MgSt particles to break, delaminate, and adh...

Descripción completa

Detalles Bibliográficos
Autores principales: Goh, Wei Pin, Montoya Sanavia, Ana, Ghadiri, Mojtaba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400245/
https://www.ncbi.nlm.nih.gov/pubmed/34452172
http://dx.doi.org/10.3390/pharmaceutics13081211
Descripción
Sumario:Glidants and lubricants are often used to modify interparticle friction and adhesion in order to improve powder characteristics, such as flowability and compactability. Magnesium stearate (MgSt) powder is widely used as a lubricant. Shear straining causes MgSt particles to break, delaminate, and adhere to the surfaces of the host particles. In this work, a comparison is made of the effect of three mixer types on the lubricating role of MgSt particles. The flow behaviour of α-lactose monohydrate, coated with MgSt at different mass percentages of 0.2, 0.5, 1, and 5 is characterised. The mixing and coating process is carried out by dry blending using Turbula, ProCepT, and Mechanofusion. Measures have been taken to operate under equivalent mixing conditions, as reported in the literature. The flow resistance of the coated samples is measured using the FT4 rheometer. The results indicate that the flow characteristics of the processed powders are remarkably similar in the cases of samples treated by Turbula and Mechanofusion, despite extreme conditions of shear strain rate. The least flow resistance of samples is observed in the case of samples treated by the ProCepT mixer. High-velocity collisions of particles round off the sharp corners and edges, making them less resistant to flow. The optimal percentage of magnesium stearate is found to be approximately 1% by weight for all mixer types, as the addition of higher amounts of lubricant does not further improve the flowability of the material.