Cargando…
Thermal Image Restoration Based on LWIR Sensor Statistics
An imaging system has natural statistics that reflect its intrinsic characteristics. For example, the gradient histogram of a visible light image generally obeys a heavy-tailed distribution, and its restoration considers natural statistics. Thermal imaging cameras detect infrared radiation, and thei...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400297/ https://www.ncbi.nlm.nih.gov/pubmed/34450885 http://dx.doi.org/10.3390/s21165443 |
_version_ | 1783745282227306496 |
---|---|
author | Han, Jaeduk Lee, Haegeun Kang, Moon Gi |
author_facet | Han, Jaeduk Lee, Haegeun Kang, Moon Gi |
author_sort | Han, Jaeduk |
collection | PubMed |
description | An imaging system has natural statistics that reflect its intrinsic characteristics. For example, the gradient histogram of a visible light image generally obeys a heavy-tailed distribution, and its restoration considers natural statistics. Thermal imaging cameras detect infrared radiation, and their signal processors are specialized according to the optical and sensor systems. Thermal images, also known as long wavelength infrared (LWIR) images, suffer from distinct degradations of LWIR sensors and residual nonuniformity (RNU). However, despite the existence of various studies on the statistics of thermal images, thermal image processing has seldom attempted to incorporate natural statistics. In this study, natural statistics of thermal imaging sensors are derived, and an optimization method for restoring thermal images is proposed. To verify our hypothesis about the thermal images, high-frequency components of thermal images from various datasets are analyzed with various measures (correlation coefficient, histogram intersection, chi-squared test, Bhattacharyya distance, and Kullback–Leibler divergence), and generalized properties are derived. Furthermore, cost functions accommodating the validated natural statistics are designed and minimized by a pixel-wise optimization method. The proposed algorithm has a specialized structure for thermal images and outperforms the conventional methods. Several image quality assessments are employed for quantitatively demonstrating the performance of the proposed method. Experiments with synthesized images and real-world images are conducted, and the results are quantified by reference image assessments (peak signal-to-noise ratio and structural similarity index measure) and no-reference image assessments (Roughness (Ro) and Effective Roughness (ERo) indices). |
format | Online Article Text |
id | pubmed-8400297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84002972021-08-29 Thermal Image Restoration Based on LWIR Sensor Statistics Han, Jaeduk Lee, Haegeun Kang, Moon Gi Sensors (Basel) Article An imaging system has natural statistics that reflect its intrinsic characteristics. For example, the gradient histogram of a visible light image generally obeys a heavy-tailed distribution, and its restoration considers natural statistics. Thermal imaging cameras detect infrared radiation, and their signal processors are specialized according to the optical and sensor systems. Thermal images, also known as long wavelength infrared (LWIR) images, suffer from distinct degradations of LWIR sensors and residual nonuniformity (RNU). However, despite the existence of various studies on the statistics of thermal images, thermal image processing has seldom attempted to incorporate natural statistics. In this study, natural statistics of thermal imaging sensors are derived, and an optimization method for restoring thermal images is proposed. To verify our hypothesis about the thermal images, high-frequency components of thermal images from various datasets are analyzed with various measures (correlation coefficient, histogram intersection, chi-squared test, Bhattacharyya distance, and Kullback–Leibler divergence), and generalized properties are derived. Furthermore, cost functions accommodating the validated natural statistics are designed and minimized by a pixel-wise optimization method. The proposed algorithm has a specialized structure for thermal images and outperforms the conventional methods. Several image quality assessments are employed for quantitatively demonstrating the performance of the proposed method. Experiments with synthesized images and real-world images are conducted, and the results are quantified by reference image assessments (peak signal-to-noise ratio and structural similarity index measure) and no-reference image assessments (Roughness (Ro) and Effective Roughness (ERo) indices). MDPI 2021-08-12 /pmc/articles/PMC8400297/ /pubmed/34450885 http://dx.doi.org/10.3390/s21165443 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Han, Jaeduk Lee, Haegeun Kang, Moon Gi Thermal Image Restoration Based on LWIR Sensor Statistics |
title | Thermal Image Restoration Based on LWIR Sensor Statistics |
title_full | Thermal Image Restoration Based on LWIR Sensor Statistics |
title_fullStr | Thermal Image Restoration Based on LWIR Sensor Statistics |
title_full_unstemmed | Thermal Image Restoration Based on LWIR Sensor Statistics |
title_short | Thermal Image Restoration Based on LWIR Sensor Statistics |
title_sort | thermal image restoration based on lwir sensor statistics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400297/ https://www.ncbi.nlm.nih.gov/pubmed/34450885 http://dx.doi.org/10.3390/s21165443 |
work_keys_str_mv | AT hanjaeduk thermalimagerestorationbasedonlwirsensorstatistics AT leehaegeun thermalimagerestorationbasedonlwirsensorstatistics AT kangmoongi thermalimagerestorationbasedonlwirsensorstatistics |