Cargando…

Dielectric Relaxation, Local Structure and Lattice Dynamics in Mn-Doped Potassium Tantalate Ceramics

Alkaline niobate and tantalate perovskites have attracted attention as polar dielectrics for electronics and telecommunications. Here, we studied the polar behaviour, lattice dynamics, and local structure in conventionally processed K(0.985)Mn(0.015)TaO(3±δ) ceramics using a combination of variable-...

Descripción completa

Detalles Bibliográficos
Autores principales: Tkach, Alexander, Almeida, Abilio, Levin, Igor, Woicik, Joseph C., Vilarinho, Paula M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400305/
https://www.ncbi.nlm.nih.gov/pubmed/34443152
http://dx.doi.org/10.3390/ma14164632
Descripción
Sumario:Alkaline niobate and tantalate perovskites have attracted attention as polar dielectrics for electronics and telecommunications. Here, we studied the polar behaviour, lattice dynamics, and local structure in conventionally processed K(0.985)Mn(0.015)TaO(3±δ) ceramics using a combination of variable-temperature dielectric and Raman spectroscopies, and X-ray absorption fine structure (XAFS) measurements, respectively. Mn doping induces a low-frequency dielectric relaxation in KTaO(3) (KT), which follows the Arrhenius law with an activation energy U ≈ 105 meV and the characteristic relaxation time τ(0) ≈ 4.6 × 10(−14) s. Our XAFS results support preferential Mn occupancy of the cuboctahedral sites as Mn(2+), with these cations strongly off-centred in the oversized oxygen cages. Such disordered Mn displacements generate electric dipoles, which are proposed as the source of the observed dielectric relaxation. We show that in Mn-doped ceramics, the low-frequency polar TO1 mode softens on cooling and, at low temperatures, exhibits a higher frequency than in undoped KT. This mode displays no detectable splitting, which contrasts with Li-doped KT that also contains off-centred Li(+) species on the cuboctahedral sites. Therefore, we conclude that the coupling between the Mn displacements and the lattice is weaker than in the Li case, and Mn-doped KT therefore exhibits a dielectric relaxation but no ferroelectric transition.