Cargando…
MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space
Echo signals in different regions in the k-space of magnetic resonance imaging (MRI) data possess different amplitudes. The signal-to-noise ratio (SNR) of a received signal can be improved by differentially setting the receiving gain (RG) parameter in different areas of the k-space. Previously, the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400380/ https://www.ncbi.nlm.nih.gov/pubmed/34450736 http://dx.doi.org/10.3390/s21165296 |
_version_ | 1783745301793734656 |
---|---|
author | Wu, Lin Zhang, Shuang Zhang, Tao |
author_facet | Wu, Lin Zhang, Shuang Zhang, Tao |
author_sort | Wu, Lin |
collection | PubMed |
description | Echo signals in different regions in the k-space of magnetic resonance imaging (MRI) data possess different amplitudes. The signal-to-noise ratio (SNR) of a received signal can be improved by differentially setting the receiving gain (RG) parameter in different areas of the k-space. Previously, the k-space data splicing method and the gain normalization implementation method were not specifically investigated; however, this study focuses on this aspect. Specifically, to improve the SNR, three RGs and MRI scans are herein designed for each gain parameter using the gradient echo sequence to obtain one group of k-space data. Subsequently, the three groups of experimental k-space data obtained using MRI scans are spliced into one group of k-space data. For the splicing process, a method for gain and phase correction and compensation is developed that normalizes different RG parameters in the k-space. The experimental results indicate that the developed methods improve the SNR by 5–13%. When the RGs are set to other combinations, the k-space data splicing and gain normalization methods presented in this paper are still applicable. |
format | Online Article Text |
id | pubmed-8400380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84003802021-08-29 MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space Wu, Lin Zhang, Shuang Zhang, Tao Sensors (Basel) Article Echo signals in different regions in the k-space of magnetic resonance imaging (MRI) data possess different amplitudes. The signal-to-noise ratio (SNR) of a received signal can be improved by differentially setting the receiving gain (RG) parameter in different areas of the k-space. Previously, the k-space data splicing method and the gain normalization implementation method were not specifically investigated; however, this study focuses on this aspect. Specifically, to improve the SNR, three RGs and MRI scans are herein designed for each gain parameter using the gradient echo sequence to obtain one group of k-space data. Subsequently, the three groups of experimental k-space data obtained using MRI scans are spliced into one group of k-space data. For the splicing process, a method for gain and phase correction and compensation is developed that normalizes different RG parameters in the k-space. The experimental results indicate that the developed methods improve the SNR by 5–13%. When the RGs are set to other combinations, the k-space data splicing and gain normalization methods presented in this paper are still applicable. MDPI 2021-08-05 /pmc/articles/PMC8400380/ /pubmed/34450736 http://dx.doi.org/10.3390/s21165296 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Lin Zhang, Shuang Zhang, Tao MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space |
title | MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space |
title_full | MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space |
title_fullStr | MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space |
title_full_unstemmed | MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space |
title_short | MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space |
title_sort | mri-based image signal-to-noise ratio enhancement with different receiving gains in k-space |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400380/ https://www.ncbi.nlm.nih.gov/pubmed/34450736 http://dx.doi.org/10.3390/s21165296 |
work_keys_str_mv | AT wulin mribasedimagesignaltonoiseratioenhancementwithdifferentreceivinggainsinkspace AT zhangshuang mribasedimagesignaltonoiseratioenhancementwithdifferentreceivinggainsinkspace AT zhangtao mribasedimagesignaltonoiseratioenhancementwithdifferentreceivinggainsinkspace |