Cargando…
Vegetative Reproduction Is More Advantageous Than Sexual Reproduction in a Canopy-Forming Clonal Macroalga under Ocean Warming Accompanied by Oligotrophication and Intensive Herbivory
Ocean warming and the associated changes in fish herbivory have caused polarward distributional shifts in the majority of canopy-forming macroalgae that are dominant in temperate Japan, but have little effect on the alga Sargassum fusiforme. The regeneration ability of new shoots from holdfasts in t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400385/ https://www.ncbi.nlm.nih.gov/pubmed/34451567 http://dx.doi.org/10.3390/plants10081522 |
Sumario: | Ocean warming and the associated changes in fish herbivory have caused polarward distributional shifts in the majority of canopy-forming macroalgae that are dominant in temperate Japan, but have little effect on the alga Sargassum fusiforme. The regeneration ability of new shoots from holdfasts in this species may be advantageous in highly grazed environments. However, little is known about the factors regulating this in Sargassum species. Moreover, holdfast tolerance to high-temperature and nutrient-poor conditions during summer has rarely been evaluated. In the present study, S. fusiforme holdfast responses to the combined effects of temperature and nutrient availability were compared to those of sexually reproduced propagules. The combined effects of holdfast fragmentation and irradiance on regeneration were also evaluated. Propagule growth rate values changed from positive to negative under the combination of elevated temperature (20 °C–30 °C) and reduced nutrient availability, whereas holdfasts exhibited a positive growth rate even at 32 °C in nutrient-poor conditions. The regeneration rate increased with holdfast fragmentation (1 mm segments), but was unaffected by decreased irradiance. These results suggest that S. fusiforme holdfasts have a higher tolerance to high-temperature and nutrient-poor conditions during summer than propagules, and regenerate new shoots even if 1-mm segments remain in shaded refuges for fish herbivory avoidance. |
---|