Cargando…
The Effect of Common Viral Inactivation Techniques on 16S rRNA Amplicon-Based Analysis of the Gut Microbiota
Research investigating the gut microbiome (GM) during a viral infection may necessitate inactivation of the fecal viral load. Here, we assess how common viral inactivation techniques affect 16S rRNA-based analysis of the gut microbiome. Five common viral inactivation methods were applied to cross-ma...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400488/ https://www.ncbi.nlm.nih.gov/pubmed/34442834 http://dx.doi.org/10.3390/microorganisms9081755 |
Sumario: | Research investigating the gut microbiome (GM) during a viral infection may necessitate inactivation of the fecal viral load. Here, we assess how common viral inactivation techniques affect 16S rRNA-based analysis of the gut microbiome. Five common viral inactivation methods were applied to cross-matched fecal samples from sixteen female CD-1 mice of the same GM background prior to fecal DNA extraction. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA. Treatment-dependent effects on DNA yield, genus-level taxonomic abundance, and alpha and beta diversity metrics were assessed. A sodium dodecyl sulfate (SDS)-based inactivation method and Holder pasteurization had no effect on measures of microbial richness, while two Buffer AVL-based inactivation methods resulted in a decrease in detected richness. SDS inactivation, Holder pasteurization, and the AVL-based inactivation methods had no effect on measures of alpha diversity within samples or beta diversity between samples. Fecal DNA extracted with TRIzol-treated samples failed to amplify and sequence, making it unsuitable for microbiome analysis. These results provide guidance in the 16S rRNA microbiome analysis of fecal samples requiring viral inactivation. |
---|