Cargando…

Hydrophobin CmHYD1 Is Involved in Conidiation, Infection and Primordium Formation, and Regulated by GATA Transcription Factor CmAreA in Edible Fungus, Cordyceps militaris

Hydrophobins are a family of small proteins exclusively secreted by fungi, and play a variety of roles in the life cycle. Cmhyd1, one of the hydrophobin class II members in Cordyceps militaris, has been shown to have a high transcript level during fruiting body development. Here, deletion of Cmhyd1...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiao, Wang, Fen, Liu, Mengqian, Dong, Caihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400498/
https://www.ncbi.nlm.nih.gov/pubmed/34436213
http://dx.doi.org/10.3390/jof7080674
Descripción
Sumario:Hydrophobins are a family of small proteins exclusively secreted by fungi, and play a variety of roles in the life cycle. Cmhyd1, one of the hydrophobin class II members in Cordyceps militaris, has been shown to have a high transcript level during fruiting body development. Here, deletion of Cmhyd1 results in reduction in aerial mycelia, conidiation, hydrophobicity and infection ability, and complete inhibition of pigmentation and primordium differentiation. Cmhyd1 plays roles in conidiation and cuticle-bypassing infection by regulating the transcripts of frequency clock protein, Cmfrq, and velvet protein, Cmvosa, as well as primordium formation via the mitogen-activated protein kinase signaling pathway. Cmhyd1 also participates in stress response, including tolerance of mycelia to osmotic and oxidative stresses, and conidia to high or low temperatures. CmAreA, a transcription factor of nitrogen regulatory, is recruited to the promoter of Cmhyd1 and activates the transcription of Cmhyd1 with coactivator CmOTam using electrophoretic mobility shift assays and transient luciferase expression in tobacco. Furthermore, CmHYD1 is proved to regulate the transcription of Cmarea at different developmental stages via a positive feedback loop. These results reveal the diverse roles and regulation of Cmhyd1 in C. militaris, and provide insights into the developmental regulatory mechanism of mushrooms.