Cargando…
Fault Diagnosis Method for Rolling Mill Multi Row Bearings Based on AMVMD-MC1DCNN under Unbalanced Dataset
Rolling mill multi-row bearings are subjected to axial loads, which cause damage of rolling elements and cages, so the axial vibration signal contains rich fault character information. The vertical shock caused by the failure is weakened because multiple rows of bearings are subjected to radial forc...
Autores principales: | Zhao, Chen, Sun, Jianliang, Lin, Shuilin, Peng, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400546/ https://www.ncbi.nlm.nih.gov/pubmed/34450936 http://dx.doi.org/10.3390/s21165494 |
Ejemplares similares
-
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
por: Tang, Hongtao, et al.
Publicado: (2021) -
University of Ottawa constant load and speed rolling-element bearing vibration and acoustic fault signature datasets
por: Sehri, Mert, et al.
Publicado: (2023) -
Improving rolling bearing online fault diagnostic performance based on multi-dimensional characteristics
por: Yang, Chuanlei, et al.
Publicado: (2018) -
Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
por: Zhang, Xiong, et al.
Publicado: (2023) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023)