Cargando…
Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses
Anthropomorphic robotic hands are designed to attain dexterous movements and flexibility much like human hands. Achieving human-like object manipulation remains a challenge especially due to the control complexity of the anthropomorphic robotic hand with a high degree of freedom. In this work, we pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400557/ https://www.ncbi.nlm.nih.gov/pubmed/34450741 http://dx.doi.org/10.3390/s21165301 |
_version_ | 1783745343005917184 |
---|---|
author | Rivera, Patricio Valarezo Añazco, Edwin Kim, Tae-Seong |
author_facet | Rivera, Patricio Valarezo Añazco, Edwin Kim, Tae-Seong |
author_sort | Rivera, Patricio |
collection | PubMed |
description | Anthropomorphic robotic hands are designed to attain dexterous movements and flexibility much like human hands. Achieving human-like object manipulation remains a challenge especially due to the control complexity of the anthropomorphic robotic hand with a high degree of freedom. In this work, we propose a deep reinforcement learning (DRL) to train a policy using a synergy space for generating natural grasping and relocation of variously shaped objects using an anthropomorphic robotic hand. A synergy space is created using a continuous normalizing flow network with point clouds of haptic areas, representing natural hand poses obtained from human grasping demonstrations. The DRL policy accesses the synergistic representation and derives natural hand poses through a deep regressor for object grasping and relocation tasks. Our proposed synergy-based DRL achieves an average success rate of 88.38% for the object manipulation tasks, while the standard DRL without synergy space only achieves 50.66%. Qualitative results show the proposed synergy-based DRL policy produces human-like finger placements over the surface of each object including apple, banana, flashlight, camera, lightbulb, and hammer. |
format | Online Article Text |
id | pubmed-8400557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84005572021-08-29 Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses Rivera, Patricio Valarezo Añazco, Edwin Kim, Tae-Seong Sensors (Basel) Article Anthropomorphic robotic hands are designed to attain dexterous movements and flexibility much like human hands. Achieving human-like object manipulation remains a challenge especially due to the control complexity of the anthropomorphic robotic hand with a high degree of freedom. In this work, we propose a deep reinforcement learning (DRL) to train a policy using a synergy space for generating natural grasping and relocation of variously shaped objects using an anthropomorphic robotic hand. A synergy space is created using a continuous normalizing flow network with point clouds of haptic areas, representing natural hand poses obtained from human grasping demonstrations. The DRL policy accesses the synergistic representation and derives natural hand poses through a deep regressor for object grasping and relocation tasks. Our proposed synergy-based DRL achieves an average success rate of 88.38% for the object manipulation tasks, while the standard DRL without synergy space only achieves 50.66%. Qualitative results show the proposed synergy-based DRL policy produces human-like finger placements over the surface of each object including apple, banana, flashlight, camera, lightbulb, and hammer. MDPI 2021-08-05 /pmc/articles/PMC8400557/ /pubmed/34450741 http://dx.doi.org/10.3390/s21165301 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rivera, Patricio Valarezo Añazco, Edwin Kim, Tae-Seong Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses |
title | Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses |
title_full | Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses |
title_fullStr | Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses |
title_full_unstemmed | Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses |
title_short | Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses |
title_sort | object manipulation with an anthropomorphic robotic hand via deep reinforcement learning with a synergy space of natural hand poses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400557/ https://www.ncbi.nlm.nih.gov/pubmed/34450741 http://dx.doi.org/10.3390/s21165301 |
work_keys_str_mv | AT riverapatricio objectmanipulationwithananthropomorphicrobotichandviadeepreinforcementlearningwithasynergyspaceofnaturalhandposes AT valarezoanazcoedwin objectmanipulationwithananthropomorphicrobotichandviadeepreinforcementlearningwithasynergyspaceofnaturalhandposes AT kimtaeseong objectmanipulationwithananthropomorphicrobotichandviadeepreinforcementlearningwithasynergyspaceofnaturalhandposes |