Cargando…
High Accurate Environmental Sound Classification: Sub-Spectrogram Segmentation versus Temporal-Frequency Attention Mechanism
In the important and challenging field of environmental sound classification (ESC), a crucial and even decisive factor is the feature representation ability, which can directly affect the accuracy of classification. Therefore, the classification performance often depends to a large extent on whether...
Autores principales: | Qiao, Tianhao, Zhang, Shunqing, Cao, Shan, Xu, Shugong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400609/ https://www.ncbi.nlm.nih.gov/pubmed/34450942 http://dx.doi.org/10.3390/s21165500 |
Ejemplares similares
-
Environmental sound classification using temporal-frequency attention based convolutional neural network
por: Mu, Wenjie, et al.
Publicado: (2021) -
Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species
por: Ludeña-Choez, Jimmy, et al.
Publicado: (2017) -
Emotional sounds of crowds: spectrogram-based analysis using deep learning
por: Franzoni, Valentina, et al.
Publicado: (2020) -
Automated annotation of birdsong with a neural network that segments spectrograms
por: Cohen, Yarden, et al.
Publicado: (2022) -
Polyphonic Sound Event Detection Using Temporal-Frequency Attention and Feature Space Attention
por: Jin, Ye, et al.
Publicado: (2022)